
259

Appendix A – Summary of Commands

This appendix details various commands that are available on MOOs. It includes
commands available on the player classes and feature objects provided with
LambdaCore, plus others such as those that are available on $room.

A note about the syntax specifications: Text enclosed in angle brackets “<>”
must be specified at the time it is typed in, e.g. instead of “<name>” you must supply
an actual name, without the angle brackets. Text enclosed in square brackets “[]” is
optional to a command. If you include it, don’t type the square brackets. A vertical
bar “|” separates either-or cases. For example, @notedit <object |
object>.<property> means you must either supply an object, or an object and a
property name separated by a period (notice that the period isn’t in the angle
brackets). Verb names with an asterisk in them (*) may be abbreviated to the part
that comes before the asterisk.

The form of each entry is as follows

<command> <arguments>

<location/source>

<Usage notes>

Commands are listed alphabetically, ignoring punctuation. Object numbers for
command locations will vary from MOO to MOO, so I only give them for commands
that are LambdaMOO-specific. “LambdaMOO” is abbreviated as “LM”.

@abort
Embedded with certain $command_utils verbs.

When prompted for text input or a yes-or-no answer, you can type @abort to
exit a task entirely.

@abort [<object>[:<verb>]]
LM player class #7069

Causes queued tasks to be aborted. You may specify either all tasks associated
with a particular object, or only tasks associated with a particular verb on an object.

@addalias <alias>[,...,<alias>] to <object>
@addalias <alias>[,...,<alias>] to <object>:<verb-name>
@addalias# <alias>[,...,<alias>] to <object>:<verb-number>
$player

The first form adds one or more aliases to an existing object. Note, player aliases
may not have spaces in them.) The second form adds one or more aliases to an
existing verb on an object. The third form unambiguously adds one or more aliases
to a particular verb on an object when there are two or more verbs with the same
name. (See also @verbs and @list#.)

260 Summary of Commands

@adddict <one or more words>
$frand_class

Adds a word or words to $spell, if present. (Many MOOs have recycled $spell
because it is cumbersomely large.) Only wizards and players in $spell.trusted may
use this verb.

@addfeature <feature object>
@add-feature <feature object>
$player

Adds a feature object to your list of features. See also @rmfeature. A feature is
an object that provides additional commands that you can use.

@addlag
LM feature object #26787

Turns off the lag reduction FO and any features similar to it. (Re-)enables @gag,
@check-full, and any other commands that utilize a player’s :tell verb to filter
and/or otherwise pre-process text before it is displayed to your screen.

@add-notify me to <player>
@add-notify <requestor> to me
$mail_recipient_class

This verb, used cooperatively between two players, allows one player to be
notified when the other player receives MOOmail. The first form sends a MOOmail
message to <player> indicating that one wishes to receive notification. The second
form adds the requestor to a person’s .mail_notify property. This might be useful
if several players shared a group character (such as LambdaMOO's Grand_Master, for
example) and wanted to be notified if the group character received mail, so as to be
able to respond to it in a timely manner.

@add-owned <object>
$builder

Adds an object to your .owned_objects property in the highly unlikely event
that it wasn’t added upon creation of the object.

@addr*oom [<name>] [<place>]
@addr*oom [<place>] [<name>]
$frand_class

Adds a room to the list of rooms you know “by name”. See also @rooms. If
<name> is not specified, then the room is remembered by its actual name (as opposed
to a nickname you provide). If <place> is not specified, then the current room is
remembered.

@addword <word or words>
$frand_class

Add a word or words to your personal dictionary, if one is kept. (This may be
disabled on some MOOs that do not use $spell.)

Summary of Commands 261

@age [<player>]
$player

Tells a person’s MOO age, i.e. how long it has been since e first connected. On
LambdaMOO, the difference between a person’s actual MOO age and eir official
MOO age is because system down time doesn’t count for aging of people. This arose
from a ballot to “stop the clock” on legislative issues (including the determination of
voting age, etc.).

@answer [<message-number>] [on <mail-recipient>] [sender | all |
followup] [include | noinclude]

$mail_recipient_class
See @reply.

@arb [all]
LM player class #322

Displays a list of the connected members of the LambdaMOO Architecture
Review Board. If all is specified, then displays all members, whether connected or
not.

@arb-ballots
LM player class #322

Lists open ballots for the LambdaMOO Architecture Review Board.

@arb-nominate <player>
LM player class #322

Obsolete. See @nominate.

@arb-petitions [all]
LM player class #322

Displays a list of all petitions nominating candidates to the office of
LambdaMOO Architecture Review Board, except those you may have declined. Using
the argument all shows all ARB nominating petitions.

@args <object>:<verb name> [<dobj> [<prep> [<iobj>]]]
@args# <object>:<verb number> [<dobj> [<prep> [<iobj>]]]
$prog

Changes the argument specifiers for an exisiting verb. Any omitted argument
specifiers remain unchanged. If no arguments are given, then this prints out the
current argument specifiers for the indicated verb. The second form (@args#) is used
to specify a verb by number rather than by name, and is useful if an object has two
verbs with the same name.

@at <object>
$frand_class

Prints a brief list of connected players either with or in <object> (depending on
whether the specified object is a player, some other kind of object, or a room).

mailto:@reply

262 Summary of Commands

@audit [<player>] [for <string>] [from <object number>] [to
<object number>]

$builder
Shows a list of objects that you own or that a specified player owns, with their

object numbers. You may optionally specify a string, and see a list of objects with
names or aliases that begin with that string. (Note, if the string has a space in it, then
you must enclose it in double quotes.) You may optionally restrict the listing to a
range of object numbers.

@ballots [all | open | closed | passed | failed | defeated]
LM player class #322

Prints a list of ballots. If no arguments are provided, prints a list of open ballots,
if any.

@ban* <object>
@ban! <object>
LM player class #322

Prevents the specified object from entering any room that you own. If used with
the exclamation point, prevents the specified object and any descendents of it from
entering any room that you own. See also @unban.

@banned
LM player class #322

Prints a list of all objects you have banned from rooms you own using the @ban
command.

boring [on | off]
LM player class #5803

Boring on makes you impervious to food fights. Boring off enables you to
participate again. Boring with no argument toggles the setting and tells you what the
new setting is. In addition, you will not lose things from your inventory into the
couch cushions if you are boring.

@boot <guest>
LM player class #322

Disconnects a guest player’s connection and disallows new connections from
that guest’s site for the following one hour. You must be at least four months old to
use the command, and must give a reason, which is posted to *boot-log. The
command must be seconded by another player.

@bug [<text>]
$mail_recipient_class

Sends MOOmail containing <text> to the owner of the room you’re in as a bug
report. If you do not specify text in the command line, then you are moved to the
mail room to compose your message (presumably at greater length).

Summary of Commands 263

@build-o*ptions [<option> | <option setting>]
Also: @buildo*ptions @builder-o*ptions @buildero*ptions
$builder

Used without arguments, this command displays your current
builder-options (settings that modify various builder commands). Used with a
single option, displays the current setting of that option. Used with an option
setting, modifies the specified option.

@check-chp*arent <object> to <new parent>
$builder

An object cannot be changed to a new parent if that object or any of its
descendents defines a property that is also defined on the intended new parent. This
command prints out all instances of conflicting properties that would interfere with
@chparent in this manner.

@ch*eck <number of lines> [[!]<player>[,…,[!]<player>]]
$player

Prints a list of “best guesses” about where a line or lines of text originated,
looking for “distrusted” players. By default, you and all the wizards are trusted, but
you may specify additional players to be trusted (<player>) or not to be trusted
(!<player>). You must have @paranoid on for this to work; LambdaMOOers will
have to type @rmlag for @paranoid to work.

@ch*eck-full <number-of-lines> | <search string>
$player

Used to identify the source of text that is of dubious origin. @check-full prints
out information about all the verbs responsible for a line of text displayed to your
screen. You may specify either a number of lines or a string of text whose origin you
wish to know more about. You must have @paranoid on for this to work;
LambdaMOOers will have to type @rmlag for @paranoid to work.

@check-p*roperty <object>.<property name>
$prog

Prints a list of all descendents of <object> that define <property name>. See
also @check-chparent.

@chmod <object> [+|-]<any substring of "rwf">
@chmod <object>.<property> [+|-]<any substring of "rwc">
@chmod <object>:<verb> [+|-]<any substring of "rwxd">
@chmod# <object>:<verb number> [+|-]<any substring of "rwxd">
$prog

Sets or changes permission flags. Objects – and also objects’ individual
properties and verbs – have permission flags that control whether non-owners can or
cannot: r ead (objects, verbs, and properties), w rite (objects, verbs, and properties),
e x ecute (verbs), manually setting the value of properties, and make children (objects)
(i.e. is the object f ertile?). The “c” flag determines whether the owner of an object
may c hange the value of a property that is defined on a parent or ancestor. (There is a
longer explanation of the “c” flag and its use beginning on page 165.) If used with
the “+” or “-” signs, it incrementally sets or clears the specified values. If used

mailto:@builder-o*ptions
mailto:@buildero*ptions

264 Summary of Commands

without the “+” or “-” signs, it sets the permission flags to the specified values
(clearing values as necessary). See also help @chmod.

@chparent <object> to <new parent>
$builder

Changes the parent of <object> to <new parent>. The object now has all the
new parent’s properties and verbs, and all the new parent’s ancestors’ properties and
verbs.

@cl*asses
$builder

Prints a list of object classes that the wizards have identified as “useful”. (This
information is stored in #0.class_registry as a list of sublists. Each sublist
consists of: {<category>, <one-line description>, {<objects>}}. The list
is maintained manually.)

@clearp*roperty <object>.<property>
@clprop*erty <object>.<property>
$prog

Clears the value of the specified property on an object. This means the property
will henceforth inherit its value from the object’s parent and will change as the value
of the propety on the parent changes. The property will remain clear until it is set or
changed on the child object itself.

@clear-tell-filter*-hook
LM player class #33337

Removes any tell-filter that is in use. (See @set-tell-filter.)

@comment [<text>]
$mail_recipient_class

Sends MOOmail containing <text> to the owner of the room you’re in as a
comment. If you do not specify text in the command line, then you are moved to
the mail room to compose your message (presumably at greater length).

@complete <beginning of a word>
$frand_class

Lists all the words in the dictionary (if present) that begin with the text you
supply. E.g. @complete silh will give “silhouette”. (This may have been disabled
in MOOs that don’t support $spell.)

connect guest | <specific guest name>
connect <player name> [<password>]
$login

Connects you to the MOO. Guest connections do not require a password.
Omitting the password for a player connection will provide a separate prompt for
your password, so that it will not be displayed on your screen.

@contents [<object>]
$builder

Gives a definitive list of <object>’s contents. If <object> is not specified, then
lists the contents of the room you’re currently in.

mailto:@chmod

Summary of Commands 265

@copy <object>:<verb> to <target object>[:<new verb>]
@copy-x <object>:<verb> to <target object>[:<new verb>]
@copy-move <object>:<verb> to <target object>[:<new verb>]
$prog

Copies a verb from one object to another, or to a new verb on the same object.
It’s better to have an object inherit a verb from a parent object than to copy verbs to
objects directly, but occasions arise when copying a verb is the only way to get
something done. @copy-x copies the verb without its “x” (e x ecutable) flag set, and
would be used to archive a verb before making modifications to the working verb.
@copy-move deletes the original verb after the copy is complete.

@count [<player>]
$builder

Tells you how many objects <player> owns and the total number of bytes used
by those objects. <player> defaults to yourself.

@countDB [<player>]
$builder

This verb is related to @count, differing only in the counting method. @count
inspects a player’s .owned_objects property. A very few system characters (notably
Hacker) do not participate in the object ownership system. To count these players’
objects, it is necessary to consider every object in the database and see if <player> is
its .owner. In large databases, this takes a long time and hogs system resources. Use
@count instead, whenever possible.

@create <parent object> named <name>[,<alias>,…,<alias>]
$builder

Creates an object with the specified parent, name, and aliases. The object’s
parent can be changed at a later time with the @chparent command. The name
and/or aliases can be changed with the @rename command. Aliases can be added or
removed with the @addalias and @rmalias commands respectively. For rooms and
exits, it’s better to use @dig than @create.

@cspell <any number of words> | <object>.<property> |
<object>:<verb>

$frand_class
For those MOOs that utilize $spell, this command will check for misspelled

words. It tends to run slowly.

@db*size
$prog

Reports the number of valid objects and allocated objects in the database.

decline <petition>
LM #55266 (Generic-Petition)

Removes <petition> from the list you see when you type @petitions.

266 Summary of Commands

@define <variable> as <value>
LM player class #8855

This command will probably be of interest only to programmers. It lets you pre-
define a value for use in a subsequent call to eval. See also @listdefs and @undef.

@denewt <player> [<comment>]
$wiz

Reverses the effect of @newt or @temp-newt.

@describe <object> as ["]<description>["]
$player

Sets the description of the specified object. If you omit the quotation marks,
then sentences will be separated by a single space only, regardless of how many
spaces you use to separate them when you type the description in. For multi-line
descriptions, edit the .description property with the note editor.

@detail me with <detail name>[,<alias>,…<alias>] as <detail
description>

@detail me with <detail name> is
LM player class #6669

Let’s you add a detail to your description. Use the null string to remove a detail.
Use the second form to display a detail. See help #6669:@detail for more
detailed examples.

@details me | <nearby player> | <player object number>
LM player class #6669

Shows what details the specified player has defined. Note, this does not match
on players’ names the way many verbs do (e.g. page). If the player you want to know
about isn’t in the same room, you will have to use eir object number.

@dig <new room name>
@dig <exit>[,<aliases>][|<return-exit>[,<aliases>]] to <new room

name> | <existing room object number>
$builder

Creates a new room, or exits to (and optionally back from) either a new room or
a specified existing room. Note, the vertical bar “|” separating exits to and from a
room is actually part of the command, rather than the meta syntax. Example:

@dig north,n | south,s to The Mosh Pit

@disown <object> [from <parent>]
Also: @disinherit
$prog

Contrary to what the name might suggest, this command does not alter an
object’s ownership. Rather, it alters an object’s parentage, changing an object’s
parent to its grandparent. This command would be used if you did not own the
object, but owned its parent, and no longer wanted the object to be a child of that
parent. Changing the permission flag on the parent to –f (see @chmod) will prevent
people from using that object as a parent in the future.

Summary of Commands 267

@d*isplay <object>[.][,][<property>]
@d*isplay <object>[:][;][<verb>]
@d*isplay <object>[.|,][:|;]
$prog

This command displays <object> and/or <object>.<property> and/or
<object>:<verb> ownership, permissions, and values (for properties). The period and
colon indicate information about properties or verbs defined on the object itself; the
comma and semi-colon indicate information about inherited properties and verbs.
See help @display for a more detailed explanation.

@display-o*ptions [<option> [<setting>]]
Also: @displayo*ptions
$player

Used without arguments, this command displays your current @display options
(settings that modify various aspects of the output from @display). Used with a
single option, displays the current setting of that option. Used with an option and
setting, modifies the specified option.

@dump <object> [with [id=#<new object number>] [noprops] [noverbs]
[create]]

$prog
Prints out all of an object’s verbs and properties. If you specify with create, it

will print it out in a form that can be used for porting an object to another MOO
rather than merely investigating it on the source MOO. You can optionally omit
properties and/or verbs, and can ask it to use a different object number in its output
(this, too, can be useful for porting an object to another MOO).

@edit <object>[.<property>]
@edit <object>:<verb> [<dobj> <prep> <iobj>]
$player

Invokes the note editor or verb editor as appropriate. If no property is specified,
then it defaults to .text if <object> is a descendent of $note or .description for
any other kind of object.

@edit-o*ptions [<option> [<setting>]]
Also: @edit-o*ptions
$player

Used without arguments, this command displays your current @edit options
(settings that control various aspects of the in-MOO editors). Used with a single
option, displays the current setting of that option. Used with an option setting,
modifies the specified option.

@egrep <regular expression> in <object> | <list of objects>
$prog

Searches the specified object or list of objects for verbs containing a substring
matching <regular expression>. A regular expression is a template for
expressing generalized strings. See help regular-expressions. See also @grep.

mailto:@display

268 Summary of Commands

@eject <player or other object> [from <location>]
@eject! <player or other object> [from <location>]
@eject!! <player or other object> [from <location>]
$player

The usual way to move something is with the @move command, and it’s
considered polite to try to @move a thing before ejecting it. If the object won’t move
and you own the object’s location (this includes yourself), then you should use
@eject. With no exclamation points, this moves an object to its .home if indicated
and possible. With one exclamation point, moves the offending object to the
location $nothing, but notifies the object that it’s being moved. With two
exclamation points, moves the object to $nothing but doesn’t notify the object.

eprint <expression>
eprint<n> <expression>
LM player class #5803

This command is useful for printing out complicated MOOcode expressions with
indentation intended to make them easier to read and understand. For example if
you had a complicated conditional clause and wanted to sort out what was actually
being checked:

eprint (caller == this && args[2] ||
this.tally_board.registry:primary_char(dude) in
this.tally_board.public_access || (caller != this &&
$local.second_char_registry:trust(caller_perms())))

would yield:

 ((caller == this) && args[2])
 || ((this.tally_board.registry:primary_char(dude)
 in this.tally_board.public_access)
 || ((caller != this)
 &&
$local.second_char_registry:trust(caller_perms())))

The output can optionally be restricted to <n> columns. There is no space
between eprint and <n>, e.g,

 eprint10 ((ticks_left() < 3000) && suspend(0)).

eval <MOO-code>
eval-d <MOO-code>
;<MOO-code>
$prog

Evaluates a line of text as if it were MOO-code. Eval-d prints errors as values
rather than generating a traceback. See help eval.

exam*ine <object>
$player

Provides more information about an object than you can get just by looking at
it, including its full name, aliases, object number, owner, description, and any

Summary of Commands 269

obvious verbs that you can use on it. Unlike @examine, its output can be modified
by the object’s owner.

@exam*ine <object>
$player

Provides the same information that examine does, except that its output can’t
be controlled by the object’s owner. This has advantages and disadvantages. The
advantage is that you may see more information. The disadvantage is that the
information might not be printed as nicely or might not be relevant to you (e.g.
“obvious verbs” that are really only intended to be used by the object’s owner).

@features [<name>] [for <player>]
$player

Lists all of a player’s features matching <name>, or, if <name> is not supplied, all
features for that player. Lists your own features if no player is specified.

@find <object number> | <player name or alias> | .<property name>
| :<verb name> | ?<help topic>

$frand_class
Prints the location of the specified thing. This is especially useful for verbs and

properties because it prints out all instances that it finds in your vicinity (including
your known objects, see @remember).

@flush-cache
LM player class #322

When you use a feature object, the server must look through all your feature
objects to find the appropriate verb. This takes time. In order to help reduce lag, the
system records your most recently used feature object verbs and checks those first.
The place where your most-recent-usage information is stored is called a cache. This
command clears out the cache of your recently-used feature object verbs.

follow <player>
LM player class #8855 (This command is also provided on some other MOOs, but

not is included with LambdaCore.)
Causes you to follow <player>. See also unfollow, stop-following, @list-

followers and lose.

@forget <object>
LM player class #26026

Removes an object from the list of those you keep track of using @remember.

@forked [<player>]
$prog

Displays a list of all your suspended and forked tasks with their respective task_id
numbers. Only a wizard may specify a player other than emself. If a wizard invokes
this command without specifying a particular player, then this command will display
all forked tasks in the system. This command is particularly useful for identifying
tasks that you may want to @kill.

270 Summary of Commands

@forked-v*erbose [<player>]
$prog

This command displays the same information as @forked, except that for tasks
that are suspended rather than forked off, shows the full callers() stack.

@forward <msg> [on *<recipient>] to <recipient>[,<other
recipients>]

$mail_recipient_class
Forwards a MOOmail message to the designated recipient(s). See help

@forward for a discussion of the nuances of this command.

@gag*! <player or object>
$player

This command prevents you from seeing any text emanating from the specified
player or object. (Note, this does not include posts to mailing lists or MOOmail. See
@refuse.) If an object has children, then you must use the exclamation point; this
will have the effect of @gagging the object and all its descendents. It is not possible
to @gag a parent object only.

@gaglist [all]
$player

The first form, with no arguments, displays a list of players and objects that you
are gagging. The second form looks for and displays players who are gagging you.
The second form is slow to run and adds to lag, so it should be used sparingly.

@gag-site <guest> for <duration>
LM player class #322

Prevents you from seeing any text from any guest connecting from the same site
as the designated guest, for the specified duration of time.

@gag-sites
LM player class #322

Displays a list of all guests whose sites you have gagged, along with when you
gagged the site and how much time is remaining before the site-gag expires.

@gender [m | f | n | <other>]
$player

Sets your gender (and pronouns) to m ale, f emale, n euter, etc.. Without an
argument, displays your current gender setting and other available genders to

@gethelp [<topic> [from <db or dblist>]]
$prog

Locates and prints out the raw text of a help topic in a form that can be cut,
modified, and pasted back in (like @dump). With no argument, gets the blank ("")
help topic.

@gms [all]
LM player class #322

Prints an @who listing of connected (or all) LambdaMOO RPG game masters.

Summary of Commands 271

@go <location>
$frand_class

Teleports you to the specified location, which can either be the object number of
a room or the name of a room in your .rooms database.

go <direction>
$room

Moves you in the specified direction (e.g. north). You may specify more than
one direction, in which case you will go in those directions in sequence. Go north
east north would move you first north, then east, then north again.

@grep <string> in <object> | {object list}
$prog

Searches the specified object or list of objects for verbs containing <string>.
See also @egrep.

@gripe [<text>]
$mail_recipient_class

Moves you to the mail editor, ready to send a mail with subject heading <text>
to the mail recipient(s) specified by the wizards in $gripe_recipients.

heartbeat
Syntax: ;me:heartbeat(<n>)
LM player class #5803

Starts up a task that prints a time stamp to your screen every <n> minutes. For
those who idle for long periods of time, this can help identify when someone paged
you. Note, this command can only be used by programmers (because it has to be
started up using eval).

help [<topic>]
$player

Displays online help text for the specified topic. If no topic is specified, then it
displays a list of some of the topics for which help text is available.

home
$player

Moves you to your home, or to the default player starting place if your home is
invalid or won’t accept you for some reason.

@idea [<text>]
$mail_recipient_class

Sends MOOmail containing <text> to the owner of the room you’re in as an
idea suggestion. If you do not specify <text> in the command line, then you are
moved to the mail room to compose your message (presumably at greater length).

inv*entory
$player

Prints a list of things you are holding, with their object numbers.

272 Summary of Commands

@join <player>
$frand_class

Teleports you to the specified player’s location. You can specify <player> by
object number, name, or any alias.

@keep-m*ail [<message sequence>]
Also: @keepm*ail
$mail_recipient_class

Prevents the designated mail message(s) from expiring (i.e. being automatically
deleted after a certain amount of time). See help @keepmail.

@kids <object>
$builder

Prints out a list (with object numbers) of all an object’s children. (Note, not all
descendents, just children.)

@kill <task id> | <object>:<verb> | soon <number of seconds> | all
| %<trailing id>

Also: @killq*uiet
$prog

Kills one or more background tasks (see @forked). The second form,
@killquiet, is better for killing large numbers of tasks, as it prints a summary of the
number of tasks killed rather than a line for each one (especially useful if you’ve
accidentally created a chain of forked tasks, each of which is sending text to your
screen). Task id numbers tend to be large. You can use the %<trailing id> form to
abbreviate the number to its last few digits: Instead of typing @kill 2053554299,
you can type @kill %299, and the system will kill all tasks in your queue that end in
the numbers 299.

@known*_objects
Also: @known*-objects
LM player class #26026

Prints a list of objects you’ve made note of with @remember.

@last-c*onnection [all]
$player

Reports your most recent connection information (when and from where) or, if
all is specified, your last ten connection times and sites.

@lastlog [<player>[,...,<player>]]
$player
LM player class #5803

Shows the last disconnect time of the specified player or players. If called with
no arguments, shows the last connection times of all players.

@linelen*gth [<number>]
$player

This command is used in conjunction with @wrap, to cause the MOO to perform
word-wrapping for you. Without arguments, informs you of your current setting,

mailto:@keepmail
mailto:@known*-objects
mailto:@wrap

Summary of Commands 273

along with whether word-wrapping is currently turned on or off. With a number as
an argument, sets your line length to that number of characters.

@list*# <object>:[<verb name> [<dobj> <prep> <iobj] | <verb
number>] [with | without parentheses | numbers] [all]
[<start>..<end>]

$prog
Lists the MOO code associated with the specified verb. Normally, this command

lists only the code found either on the specified object itself or on its nearest
ancestor. The optional argument all causes the corresponding code on the object
and all ancestors to be displayed. By default, lines are numbered and show only
those parentheses necessary to the meaning of the code. You can specify a range of
line numbers to list if you know you only want to see part of the verb. These defaults
can be changed with the @programmer-options command.

@listdefs
LM player class #8855

Lists variables you have defined using the @define command.

@list-followers
LM player class #8855

Prints a list of people who are programmatically following you. (See also
follow.)

@listgag [all]
$player

See @gaglist.

@location*s <object>
$builder

Prints out the names and numbers of all objects that contain the specified object.

@lock <object> with <key expression>
$builder

This command is used to specify (via <key expression>) locations to which
an object may be moved (and by extension, locations to which an object may not be
moved). See help keys.

lose <player> | all
LM player class #8855

This command causes <player> (or everyone) to stop following you
programmatically. See follow.

@mail <message-sequence> [on <recipient>]
$mail_recipient_class

Displays headers of the specified mail messages. (See the section on reading mail
that begins on page 51 for a detailed explanation.)

mailto:@gaglist

274 Summary of Commands

@mail-all-new*-mail
$mail_recipient_class

Displays the headers of all unread mail messages on yourself and lists to which
you are subscribed.

@mail-o*ptions [<option> | <option setting>]
Also: @mail*ptions
$player

Used without arguments, this command displays your current @mail options
(settings to customize various aspects of the mail system). Used with a single option,
displays the current setting of that option. Used with an option setting, modifies the
specified option.

@make-petition <name>[,<alias>,...,<alias>]
LM player class #322

Creates a LambdaMOO petition with the specified name and aliases.

@measure <object>
@measure summary [<player>]
@measure new [<player>]
@measure breakdown <object>
@measure recent [<number of days>] [<player>]
$builder

For MOOs that use byte-based quota, objects are measured approximately once a
week by a background measurement task. The various forms of the @measure
command provide a way to update the measurement records on an incremental basis,
when needed. @measure <object> measures the size of an object on demand. This
is appropriate if an object’s size is known to have undergone a recent significant
change. @measure summary updates the summary information displayed by the
@quota command. @measure new measures all of a player’s objects that have never
been measured. (This might be needed if one were creating a large number of small
objects in a short time span, as one is only permitted to have a fixed number of
unmeasured objects at a time.) Use @measure breakdown if you need to find
out what part(s) of an object are taking up large amounts of space. @measure
recent measures those things which have not been measured automatically with
the specified number of days.

@mess*ages <object>
$player

Lists all the messages on the specified object, and their values.

@mode [brief | verbose]
$player

Sets your viewing mode. If brief, then only the name of a room will display on
your screen when you enter that room. If verbose, then a room’s name and
description will display when you enter it. The default is verbose.

Summary of Commands 275

@more [rest | flush]
$player

If you have @pagelength set and the system has produced more lines of output
than will fit on your screen, you will see a message of the form

*** More *** <n> lines left. Do @more [rest | flush] for
more.

@more without arguments prints sufficiently many lines to fill your screen, or all
that remain, if they will fit. @more rest will print all of the remaining lines,
regardless of whether they will fit or not. @more flush discards all remaining lines
instead of displaying them on your screen.

@move <object> to <location>
$frand_class

Teleports the specified object to the specified location.

mu*rmur <person> <text>
LM player class #33337

This command does the same thing as whisper, except that the syntax is such
that you don’t need to enclose the whispered text in quotation marks.

news [all | new | contents | archive]
$player

Read the contents of the newspaper, which is a subset of messages on the *news
mailing list that the wizards have designated as being of current interest or relevance
to the entire MOO. news new will display news items that you have not yet read.
news all will display all news items. news contents will display headers of all
news items. news archive will display all messages on the *news mailing list.

@netforw*ard [<message-sequence> [on <mail-recipient>]]
$mail_recipient_class

Forwards the designated message(s) to your registration email address. Defaults
to the current message on your current folder.

@newmess*age <message-name> [<message-text>] [on <object>]
$builder

In general, only programmers can add new properties to objects. This command
lets non-programmer builders add message properties to objects they own.

@newt <player> [<reason>]
$wiz

A wizard-only command. Inhibits the specified player’s ability to connect to the
system. A MOOmail message is automatically sent to *site-locks. See also
@denewt, @temp-newt.

@next [<how-many>] [on <mail_recipient>]
$mail_recipient_class

Prints out the next <how-many> mail messages on your current folder or the
designated mail recipient (yourself or a mailing list). Defaults to one message.

mailto:@more

276 Summary of Commands

@nominate <player> for <office>
LM player class #322

Nominates a person for public office on LambdaMOO. This can only be done
during a two-week nominating period before any election. The offices are: ARB,
Reaper, and Registrar.

@notedit <note-object> | <object>.<property>
$player

Moves you to the note editor, working either on the text of the specified note or
on the text in the designated property on the designated object.

@nprop*erty <object>.<prop-name> [<initial-value> [<perms>
[<owner>]]]

LM player class #5803
This is just like @prop*erty, except that <initial-value> is evaluated, first.

@owner <object>
$player

This command shows you who the owner of an object is. (It was added to
LambdaMOO in July, 2000, and may or may not be available on other MOOs.)

page <player> <text>
$player, LM player class #5803

Sends <text> to <player> as if you were paging em from a distance. The
fancier version on LM player class #5803 lets you page more than one player
simultaneously; you must enclose the players’ names in quotation marks: page
"<player1> <player2> <player3>" <text>.

@pagelen*gth [<number>]
$player

This command is used in conjunction with @more to control the display of lines
on your screen. When a number is specified, it sets your page length to a number of
rows (of text). The system will prompt you with a message to type “@more” if there is
more text about to display than will fit at one time. Without an argument, it will
show you your current setting. To turn off page buffering and see all the lines of text
at once, set your page length to zero. This would be an appropriate choice if you
were switching from telnet to a client that lets you scroll back, for example.

@paranoid [off | immediate | <number>]
$player

This command is used to record and investigate lines of text that print to your
screen. If invoked with immediate as the argument, it will prepend each line you see
with the name of the player it thinks is responsible for generating that line. If
invoked with <number>, then that number of lines is stored for later inspection with
@check or @check-full. On LambdaMOO, players must first type @rmlag to
disable the lag-reduction FO for @paranoid to work.

@parent <object>
LM player class #8855

Tells you the name and object number of an object’s immediate parent.

Summary of Commands 277

@parents <object>
$builder

Displays the names and object numbers of an object’s parent and ancestors.

party
LM player class #5803

This command prints a list of rooms and occupants in order of decreasing crowd
size and increasing idle time (i.e. the liveliest parties first). For each, it comments on
the security arrangements and asks if you want to go there. You may discontinue the
listing at any time by typing @abort.

@password <old-password> <new-password>
$player

Changes your password.

@paste
Pasting Feature Object, LM player class #8855

Prompts for lines of text (terminated by a period on a line by itself) then displays
the text to the entire room.

@pasteto <player>
Pasting Feature Object

Prompts for lines of text, then displays them (privately) to the specified player.

@pc-news
LM player class #33337

The author of the Politically Correct Featureful Player Class
Created Because Nobody Would @copy Verbs to 8855 provided himself with
a way to broadcast news items to users of his player class in a manner similar to the
MOO-wide news command. This command is used to read those news items.

@pc-options
LM player class #33337

This player class provides an options package that works the same way that
@mail-options does. Type @pc-options to list these options, and help @pc-
options for additional information on setting them.

@pedit <object>.<property>
LM player class #5803

This command moves you to the property editor, described as “highly
experimental” by its author. If you are editing a property whose value is a string or
list of strings, you are probably better off using the note editor, instead, but this
facility might be useful for editing properties with a more complex structure. See
help @pedit for more detailed information.

@petition-options
LM player class #322

Lists options that pertain to various aspects of the LambdaMOO petition and
ballot system. Use @petition-option +noannounce to suppress announcements
of open ballots every time you log in.

mailto:@copy
mailto:@pc-
mailto:@pedit

278 Summary of Commands

@petitions [all | public | signed | vetted]
LM player class #322

Lists all or some petitions, as specified. The default is to list signed petitions.
You can use @petition-options to customize the order in which petitions are
presented.

@prettylist <object>:<verb>
LM player class #5803

Prints a verb with line breaks and indentations intended to make it easier to
read.

@prev*ious [<how-many>] [on <mail_recipient>]
$mail_recipient_class

Prints out the previous <how-many> mail messages on your current folder or the
designated mail recipient (yourself or a mailing list). Defaults to one message.

@prog*ram <object>:<verb> [<dobj> <preposition> <iobj>]
@program# <object>:<verb-number>
$prog

These commands put you into a line-reading mode. The lines you type in are
saved as the content of the designated verb on the designated object, if that verb
exists (otherwise the lines of text are still read, but are ignored).

@progo*ptions
Also: @prog-o*ptions @programmero*ptions @programmer-o*ptions
$prog

Lists a set of options available to programmers to customize certain system
behaviors related to programming, e.g. whether line numbers print out when you list
a verb. The @programmer-options package works like the @mail-options
package.

@prop*erty <object>.<property-name> [<initial value> [<permission-
flags> [<owner>]]]

$prog
Adds a property to an object. The initial value defaults to 0. The permission

flags default to "rc", but this can be changed as one of the @programmer-options.
A wizard may specify an owner other than emself.

@pros*pectus <player>
$prog

This command is like @audit, but provides additional information about each
object, such as whether it has kids, how many verbs are defined on it, etc. See help
@prospectus for more detailed information.

@quickr*eply <msg> [on <recipient>] [sender | all | followup]
Also: @qreply
$mail_recipient_class

This command lets you reply to a mail message without actually going to the
mail editor. It prompts you for lines of input and then sends them directly.

mailto:@programmero*ptions
mailto:@programmer-o*ptions

Summary of Commands 279

@quick*send <mail-recipient> [subj = "text"] [<one-line-message>]
Also: @qsend
$mail_recipient_class

Sends a message to a player or a list without moving you to the mail editor. If
you do not specify a one-line message, it prompts you for lines of input, then sends
them directly.

@quit
$player

Disconnects you from the MOO. Your player object is automatically moved to
its home a short time later.

@quota [<player>]
$builder

Prints out your current quota and measured usage, or the quota of a specified
player.

@ranm
$mail_recipient_class

See @read-all-new*-mail.

@read [<message-sequence> [on <mail-recipient>]]
$mail_recipient_class

Reads the specified messages on the specified mail recipient (yourself or a MOO
mailing list). If no message sequence or recipient is specified, reads your current
message on your current folder. Updates your current message pointer.

@read-all-new*-mail
$mail_recipient_class

Reads all new messages on all mailing lists to which you are subscribed. Prompts
you at the end to verify that you got all the information, and if you answer yes,
updates your current message pointer. If the system crashes or you somehow
disconnect before being able to answer the prompt, then your current message
pointer is not updated, and these messages will still appear as new messages next time
you log on. This command can be abbreviated as @ranm.

@reaper-ballots
LM player class #322

Lists ballots for the office of LambdaMOO Reaper.

@reaper-petitions
LM player class #322

Prints a list of all petitions nominating candidates to the office of LambdaMOO
Reaper, except those you may have declined. Using the argument all shows all
reaper nominating petitions.

@reapers [all]
LM player class #322

Prints a list of connected (or all) LambdaMOO Reapers. Reapers recycle players
who have not logged on for a certain amount of time, and oversee the distribution of
their owned objects if deemed appropriate. See help reaping.

mailto:@read-all-new*-mail

280 Summary of Commands

@recreate <object> as <parent> named <new-name>
$builder

Takes an existing object and totally recreates it as a new kid of <parent> as if
with @create. Verbs and properties on the object are stripped off, and inherited
properties are reset to be clear.

@recycle <object>
$builder

Destroy an object irretrievably. If you have your @builder-options set to
–bi_create (the preferred setting), the object will be turned into a kid of $garbage
for re-use the next time someone invokes @create. Players may not be recycled
unless they have first been made non-players with the @toad command or an
equivalent.

@refusal-r*eporting [on | off]
$frand_class

If set to on, notifies you when someone whom you are refusing attempts a
refused action while you are connected (“so that you can thumb your nose,” says the
documentation). If invoked without an argument, displays whether refusal reporting
is currently on or off. Refusal reporting works for page, whisper, and mail, but
doesn’t work for move, join, or accept.

@refusals [for <player>]
$frand_class

Lists players and actions that you are refusing or that the specified player is
refusing.

@ref*use <action(s)> [from <player>] [for <duration>]
$frand_class

The MOO provides a way to refuse certain actions, either universally or from a
specified player. The actions that can be refused are page, whisper, mail, move,
join (only works in certain rooms that support it), accept, flames, politics
(LambdaMOO only), and all of the above. See also help @refuse.

@registerme [as <email-address>]
$player

Displays your current MOO registration email address, or changes it to a new
one. If you are changing it, a new password is generated and mailed to the new
address. You can change the new password back again with the @password
command.

@registrar-ballots
LM player class #322

Lists ballots for the office of LambdaMOO Registrar.

@registrar-petitions [all]
LM player class #322

Prints a list of all petitions nominating candidates to the office of LambdaMOO
Registrar, except those you may have declined. Using the argument all shows all
registrar nominating petitions.

mailto:@refuse

Summary of Commands 281

@registrars [all]
LM player class #322

Prints a list of connected (or all) LambdaMOO Registrars. Registrars assist the
wizards in creating new players. They have access to players’ email addresses.

@remember <object>
LM player class #26026

Remember an object’s number. You can see a list of these objects by typing
@known. See also @forget.

@remove-feature
See @rmfeature.

@rename <object> to "<new-name>"[,"<alias>",...,"<alias>"]
$player

Rename an object, with or without additional aliases. See help @rename for
some detailed examples.

@renumber [me | <mail-recipient>]
$mail_recipient_class

Renumbers, from 1 to the total number of messages, all MOOmail messages on
yourself or on a mailing list you own. Renumbering a public mailing list is
inadvisable because it disrupts other players’ current message pointers to that list. No
messages are actually lost, but @rn will show that there are new messages on the list
while @nn will say that there are no new messages. See also help zombie-
messages.

@repl*y [<message-number>] [on <mail-recipient] [sender | all |
followup] [include | noinclude]

$mail_recipient_class
Takes you to the mail editor and sets up a reply to the specified message. Specify

sender to reply to the sender only, all to send your reply to all recipients who
received the original post, or followup to send your reply to the first non-player
recipient (i.e. a list). Specify include or noinclude to include or omit (respectively)
the text of the original message. If these options are omitted, the defaults are sender
and noinclude, but these can be changed with @mail-options.

@request <character-name> for <email-address>
$guest

This is the command used to request a player-character on a MOO.

@resend <message-sequence> [on <mail-recipient>] [to
<recipient(s)>]

$mail_recipient_class
This is like @forward, except that it keeps the original body of the forwarded

message intact and modifies the header to indicate that you resent it.

mailto:@rename

282 Summary of Commands

@resident <player-or-object>
@resident !<player-or-object>
@residents
$room

The first form adds a player or object to a room’s list of allowable residents. If a
player, that player may then set eir home to that room. The second form removes a
player or object from a room’s list of residents. The third form displays a room’s
current list of residents.

@rmalias <alias> from <object>
@rmalias <alias> from <object>:<verb-name>
@rmalias# <alias> from <object>:<verb-number>
$player

Removes an alias from the specified object or verb. @rmalias# is for
unambiguously identifying a verb when an object may have more than one verb with
the same name.

@rmdict <word>
$frand_class

Remove a word from $spell, if present. (Many MOOs have recycled $spell
because it is cumbersomely large). Only wizards and players in $spell.trusted
may use this verb.

@rmfeature <feature-object>
$player

Remove a feature from your .features list. Feature objects are used to extend
the set of commands available to a player. See also @add-feature.

@rmlag
LM feature object #26787

Turns on the lag reduction FO and any features similar to it. Disables @gag,
@check-full, and any other commands that utilize a player’s :tell verb to filter
and/or otherwise pre-process text before it is displayed to your screen.

@rmm*ail [<message-sequence>] [from <recipient>]
$mail_recipient_class

Removes one or more MOOmail messages from yourself or a specified mail
recipient (mailing list). See also @unrmmail.

@rmprop*erty <object>.<property-name>
$prog

Removes the named property from the specified object.

@rmr*oom <name>
$frand_class

Remove the named room from the list of rooms you remember by name. See
also @addroom and @rooms.

Summary of Commands 283

@rmverb <object>:<verb-name> [<dobj> <prep> <iobj>]
@rmverb# <object>:<verb-number>
$prog

Remove the specified verb from the specified object. If there are two or more
verbs with the same name, removes the most recently defined one. If the argument
specifiers are provided, then it removes the most recently defined one matching both
verb name and argument specifiers. The second form, @rmverb#, is used to
unambiguously remove a verb as specified in the (1-based) list given by the built-in
function verbs(<object>).

@rmword <word>
$frand_class

Remove a word from your personal dictionary (stored in a player’s .dict
property).

@rn
$mail_recipient_class

Lists a summary of new messages on mailing lists to which you are subscribed,
similar to that displayed when you log in.

@rooms
$frand_class

Displays a list of rooms you have remembered using the @addroom command.

seek <player>
LM player class #7069

Tries to move you to the designated player’s location using an exit, thus
simulating walking (as opposed to teleporting). (See also help #27325:@seek).

@send [<recipient> [<recipient(s)>] [subj[ect]="<subject>"]
$mail_recipient_class

Moves you to the mail editor and prepares you to compose a MOOmail message
to the designated recipient(s). If no recipient is specified, resumes an earlier mail
editor session, if there was one.

@setenv <environment string>
$prog

Sets a string that is evaluated before the eval command evaluates anything else.
Example: @setenv me=player;here=player.location

@sethome
$player

Tries to set your home to your current location. Some rooms permit players to
set their homes there, while others do not. This is at the discretion of the room’s
owner. If you are a room owner and want to make it so that anyone may set eir
home there, @set <room>.free_home to 1. To permit an individual player to set
eir home to a room you own, use the @resident command.

284 Summary of Commands

@set*prop <object>.<property name> to <value>
$builder

Changes the value of an existing property on an object to the specified new
value.

@set-tell-filter*-hook <tell-filter-object>
LM player class #33337

A tell-filter is an object that intercepts text which is about to be displayed to your
screen and may (or may not) modify that text in some way before it is actually
displayed to you. One possible example would be to put a special symbol before text
that was generated with the emote verb. A tell filter is usually custom programmed
by the player intending to use it – if you use a tell-filter owned by someone else, its
owner would theoretically be able to see most of the text that you see if e chose to.
(See also @clear-tell-filter and help tell-filter.)

@s*how <object> | <object>.<property> | <object>:<verb>
$prog

This command is very similar to @display, but the information it displays about
objects, properties and verbs is in a different format and more detailed. See also @ss
and @display.

@skip <mail recipient>
$mail_recipient_class

Skip to the end of a mailing list, as if you had read all the messages. (This resets
your current message pointer for that list.)

@sort-owned*-objects object | size
$builder

The @audit command displays a list of objects you own in the order that you
created them. This command lets you change that so that your objects are sorted by
object number or by size. Once this is done, however, there is no way to go back to
having them sorted by when they were created.

@spell <any number of words> | <object>.<property> |
<object>:<verb>

$frand_class
Checks the spelling of a sequence of words, the words in an object’s property

(the property must be a string or list of strings), or the quoted parts of a verb. (This
command may be disabled on some MOOs.)

@spellm*essages <object>
$frand_class

Checks the messages (all properties whose name ends in _msg) on the specified
object for correct spelling. See also help spelling.

@spellp*roperties <object>
$frand_class

Check all properties on the specified object for correct spelling. Properties that
are not a string or a list of strings will be ignored. See also help spelling.

Summary of Commands 285

@spurn [!]<object>
$frand_class

Prevent an object or any of its descendents from entering your inventory. Used
with the exclamation point, this command removes an object from your list of
spurned objects.

@spurned
$frand_class

Displays a list of spurned objects.

@ss*how <object> | <object>.<property> | <object>:<verb>
LM player class #5803

A short version of @show.

stop-following <player>
LM player class #8855

Cease programmatically following <player> wherever e goes. See also follow.

@subscribe [<mailing list>]
@subscribe*-quick [<mailing list>]
$mail_recipient_class

Subscribes you to a mailing list. If you type @subscribe without specifying a
mailing list, then the system will print out all the lists to which you are not
subscribed, along with their descriptions. @subscribe-quick, without specifying a
mailing list, will print out only the names of the mailing lists to which you are not
subscribed, i.e. the lists’ descriptions are omitted.

@subscribed
$mail_recipient_class

Displays a list of all mailing lists to which you are subscribed, whether or not
they have new messages on them. See also @rn.

@suggest*ion [<text>]
$mail_recipient_class

Sends MOOmail containing <text> to the owner of the room you’re in as a
suggestion. If you do not specify text in the command line, then you are moved to
the mail room to compose your message (presumably at greater length).

@sweep
$player

This verb searches your local environment for objects that might be relaying
information. It omits objects and verbs owned by yourself or by a wizard.
Programmers wishing to customize what is displayed by their objects when someone
uses the @sweep command should add a :sweep_msg verb.

@teleport
See @move.

286 Summary of Commands

@tell-filter
LM player class #33337

Displays information about the tell-filter object in use, if any. See @set-tell-
filter.

@toad <player> [graylist | blacklist | redlist] [<comment>]
@toad! <player> [graylist | blacklist | redlist] [<comment>]
@toad!! <player> [graylist | blacklist | redlist] [<comment>]
$wiz

A wizard-only command. Deactivates a player object’s status as a player, but
does not recycle the object. The player’s owned objects are left in the database as
orphans, so it’s a good idea to @audit em first and @recycle the objects listed. If
used with one exclamation mark, the victim is also @blacklisted. If used with two
exclamation marks, the victim is @redlisted. The optional comment is included in a
post to *site-locks. See also help @toad and help @blacklist.

@tutorial
LM player class #322

Starts a tutorial of basic MOO commands. Type quit at any time to discontinue
it.

@typo [<text>]
$mail_recipient_class

Sends MOOmail containing <text> to the owner of the room you’re in, to
report a typographical error. If you do not specify text in the command line, then
you are moved to the mail room to compose your message (presumably at greater
length).

@unban <player or object> | everyone
LM player class #322

Cease banning someone or something from all rooms you own. See also @ban,
@banned.

@undef*ine <label>
LM player class #8855

Remove a definition for eval. See @define.

unfollow <player>
LM player class #8855

Stop following <player> wherever e goes. See also follow.

@ungag <player or object>
$player

Cease @gagging a player or object. You will once again see text originating from
em or it. See @gag.

mailto:@blacklisted
mailto:@redlisted
mailto:@toad
mailto:@blacklist

Summary of Commands 287

@ungag-site all | last | <guest> [<date>]
LM player class #322

Cease @gagging a site associated with a guest. See @gag-site, @gag-sites.
Specify the date if you used @gag-site for guests with the same name on different
occasions.

@unlock <object>
$builder

Clear any lock you may have placed on the object. See @lock, and help
locking.

@unmess*age <message-name> [from <object>]
$builder

Remove a message property from an object you own (defaults to yourself).
(Normally only programmers can add and remove properties. But anyone can add or
remove a message.) See @newmessage.

@unread <msg> [on <recipient>]
$mail_recipient_class

Reset your message pointer, as if you haven’t yet read the specified message on
the specified mailing list.

@unrefuse <actions> from <player> | <actions> | everything
$frand_class

Cease @refusing specified actions. See @refuse.

@unrmm*ail [list | expunge] [on <recipient>]
$mail_recipient_class

When you remove a MOOmail message from yourself or a mailing list using
@rmm, it isn’t really deleted from the database, but rather is saved in a sort of limbo as
a zombie message. The main purpose of the @unrmm command is to undo the
removal of a message, restoring it to yourself or a mailing list. You can also use this
command to view a mailing list’s associated zombie messages, or to expunge any
zombie messages so that they are well and truly gone forever.

There are a few idiosyncrasies of this verb that the formal syntax, while correct,
doesn’t make very clear. First, notice that while we remove messages from a list, we
unremove them on a list. Second, unremove is an all-or-nothing proposition – you
can’t specify a message sequence. For a specified recipient, you list all zombie
messages, restore all zombie messages, or expunge all zombie messages. See also help
@unrmmail and help zombie-messages.

@unsend [<message-sequence>] from <player>
$mail_recipient_class

This command enables one, in some circumstances, to retract a post that one has
sent to a player. There are several exceptions. See help @unsend. It was added to
LambdaMOO in 1999, and therefore is not present in older versions of the core
database.

mailto:@unsend

288 Summary of Commands

@unset-tell-filter*-hook
LM player class #33337

Removes any tell-filter that is in use. (See @set-tell-filter.)

@unsubscribe [<list or lists>]
$mail_recipient_class

Unsubscribes you from the specified mailing lists, or your current mailing list if
no mailing list is specified.

@unsubscribed
@unsubscribed-quick
$mail_recipient_class

Prints out the names and descriptions of all mailing lists to which you are not
currently subscribed. The quick version prints out names only.

@uptime
$player

This command displays the amount of time since the last system restart.

@users
$player

Lists names of all connected players, in alphabetical order. See also @who.

@verb <object>:<verb name(s)> [<dobj> <preposition> <iobj>
[<permission flags> [<verb owner>]]]

$prog
Adds a new verb to an object. If more than one alias is given to the verb, then

the names should be separated by spaces and all enclosed in double quotes, e.g.,
@verb me:"fee fie fo fu*m". Default argument specifiers can be specified with
@prog-option. The verb owner defaults to yourself; only wizards can specify a
different verb owner. You must own an object or be a wizard in order to add a verb
to it.

@verbs <object>
$prog

Prints a concise list of the verbs defined on an object. See also @display.

@verify-owned
$builder

Verifies that your owned objects are all, in fact, owned by you. (A situation
where this might not be the case could occur when an inexperienced wizard tried to
change an object’s ownership by manually setting its .owner property rather than
using the wizard-only @grant command.)

@version
$player

Prints out the version number of the currently-running MOO server, and the
date that the database was extracted from the core.

mailto:@who

Summary of Commands 289

@watch [<player> | none | off]
LM player class #33337

This verb notifies you when the watched player ceases to be idle, i.e., when e
types something. With no arguments, tells you whom you are watching. With none
or off, turns watching off.

@ways [<room>]
$frand_class

Lists a room’s obvious exits and their aliases.

ways
LM player class #5803

Lists all of the obvious exits from your current location.

@web me is [<web information>]
$frand_class

This verb lets you specify web information about yourself (e.g. your home page)
for others to view. If <web information> is omitted from the command, it shows
you your current web information. Programmers may access others’ web information
either via a player’s .web_info property or :web_info verb. This verb and its
associated properties are not included with the LambdaCore (even though
$frand_class is included).

where*is [<player> [<player(s)>]]
@where*is [<player> [<player(s)>]]
$player

Lists the name(s), object number(s), location(s) and location object number(s) of
the specified player or players. If no argument is given, then lists all players.

wh*isper "<text>" to player
$player, $frand_class, LM player class #7069

Communicates <text> to the specified player. Other players in the room do not
see the exchange. The version on $frand_class permits @refusal of whispers.
The version on LM player class #7069 stores the identity of the person who most
recently whispered something to you for use with its respond verb, =. See also
murmur, @refuse, =.

@who [<player> [<player(s)>]]
$player

Shows the names, numbers, idle durations and locations of the specified players,
or all players if none are specified. Many different versions of this verb have since
been written; some player classes provide ways to select which version of @who you
prefer to use. See also @users.

290 Summary of Commands

@will recycle <item designator>
@will bequeath <item designator> to <player>
@will refuse <item designator> to <player>
@will keep <item designator>
@will display
@will forget <item designator>
@will clear
LM player class #322

This command provides a variety of ways for one to specify how one wishes
one’s objects to be disposed of in the event that one is reaped. See help @will on
LambdaMOO for more detailed information.

@witness [on]
@witness off
@witness show [<number>]
@witness display [<number>]
@witness delete <number>
@witness email <number>
@witness publish <number>
LM player class #322

This command provides a way to log conversations. Witness logs cannot be
modified, even by the person who is doing the logging. See help @witness.

@wizards [all]
$player

Lists connected (or all) wizards.

@wrap [on | off]
$player

If the words you see get cut off at the right edge of the screen, this means that
you are either using telnet, or, for some other reason, you don’t have word-wrap.
@wrap on causes the MOO to perform word-wrapping for you. This command is
used in conjunction with the @linelen command, which tells the MOO how long a
line may be before it is wrapped to the next line. @wrap off discontinues this
behavior; you may need to do this if you switch from using telnet to using a client
program. Typing @wrap with no arguments will tell you whether word-wrapping is
currently on or off.

'<player> <text>
LM player class #8855, LM player class #33337

This command is a short cut for the page command. Though not part of the
core, it has been ported to various other MOOs. (The version on #33337 permits you
to omit <player> to respond to the person who paged you most recently.)

? [<topic>]
$player

This is a short cut for the help command.

mailto:@will
mailto:@witness
mailto:@wrap

Summary of Commands 291

!<text>
LM player class #5803

This command lets you vary the forms of your statements if you get tired of
beginning everything with your name. If your name is included anywhere in
<text>, then <text> is displayed as you typed it in. Otherwise, your name is
appended to the end as an attribution. See help !. Here are a couple of examples
(with Yib doing the typing):

!Two thumbs up!

displays:

Two thumbs up! --Yib

!A coconut cream pie sails into the room and smashes into
Yib's face!

displays:

A coconut cream pie sails into the room and smashes into
Yib's face!

#<string>[.<property>|.parent] [e*xit | p*layer | i*nventory] [for
<code>]

$prog
Prints information about the object named by <string>. This is a very powerful

shortcut for some of the things that the eval command does. In particular, it
enables you to look at properties of an object without having to know its object
number in advance. Properties can be chained in sequence. Here are a few examples:

#rock.color_list
displays the .color_list property of rock.

#yib p
displays Yib’s name and object number.

#yib.description p
displays Yib’s description – foils look-detection.

#yib.location p
displays Yib’s location.

#yib.location.description
displays a description of Yib’s location.

#yib.location.owner p
displays who is the owner of Yib’s location.

See help #.

292 Summary of Commands

+<player> <text>
LM player class #5803

This is the remote-emote command. It lets you display <text> to <player> as
if it were an emote, but you do not have to be in the same room with em.

=[<text>]
LM player class #7069

Responds with <text> to the player who most recently paged you. Used with
no argument, displays the player to whom you are ready to respond.

