
37

Chapter 3 – What’s Going On, Here?

Objects

MOO stands for “MUD, Object-Oriented”13. This section discusses in depth what
an object actually is.

Objects are the building blocks of a MOO. They are things; in a sense, they are
nouns: A noun is a word that represents a person, place, or thing; an object is a data
construct within the computer program that is the MOO (i.e. the server) that
represents a person, place, or thing. Some nouns represent concrete things, such as
chairs, cats, and candy, while others represent intangible things, such as news,
knowledge, and abilities. Likewise, some objects represent concrete things within the
MOO (chairs, cats, candy) while other objects represent intangible things (news,
knowledge, and abilities). But intangible things are still things, and therein lies the
nature of an object.

Every object in a MOO is assigned a number upon creation. This number is
unique within the MOO and immutable. If absolutely every characteristic of an
object were changed – its name, its owner, its location, its description – its number
would still be the same.

There are certain pieces of information that are attached to every valid object
without exception. (An object that has a number but doesn’t have these pieces of
information associated with it is an invalid object, by definition.) These pieces of
information include the object’s owner (itself identified by object number), its
location (identified by object number), its contents (a list of one or more object
numbers), and its parent (identified by object number).

Object parenthood is a special concept. An (imperfect) analogy is the taxonomy
of animals. There are animals, and then there are vertebrates and invertebrates, and
there are mammals and reptiles and insects, and there are felines and canines, and
there are tigers, and then there’s this tiger that happens to have a litter of adorable
tiger kittens, among which is a particular tiger kitten whose name is “Stripes”. The
structure (which is also called the object hierarchy) is like a family tree (or a root
system), where everything is descended from a thing (an object) that came before it.
The root object (with a unique number: #1) is unusual in that it has no parent.

Some objects are used so often that the system provides a way to refer to them by
name instead of by object number, and we use a $-sign to designate those. Some
especially common ones are $thing, $container, $room, and $note. But each of
them also has a unique object number on the MOO (#5, #8, #3, and #9 respectively,
on LambdaMOO).

13 “MUD” has come to stand for “Multi-User Domain”, though it’s original meaning was “Multi-User

Dungeon”. MUDs have their roots in a role-playing game called “Dungeons and Dragons” and in some
single-user computer games along the same lines that were popular in the 1970’s and 1980’s, notably
Adventure and Zork .

38 What’s Going On, Here?

When you create an object, you begin by specifying its parent and its name, for
example:

@create $thing named "rock"

The system will respond with something like:

You now have rock with object number #1614 and parent
generic thing (#5).

And your rock will have all the attributes and characteristics of the generic thing
that is its parent, until such time as you modify it, for example by giving it a
description, or maybe by programming it to behave in some rock-like way.

You can see a list of all the objects you own by typing:

@audit me

You can see a list of objects Yib owns by typing @audit Yib. When you
examine an object, you are told its number, among other things. You can check your
parent object and its parent object(s) (i.e., its ancestors) by typing @parents me, and
you can check the parents of any object by typing @parents <object>.

When must you refer to an object by its number, and when can you just use its
name? In general, if you are holding an object, or are in the same room as an object,
then you can refer to it by its name. If you are at some remove from an object (i.e.
neither holding it and nor in the same room) then you generally have to refer to that
object by its number in order for the system to know which object you mean. There
are some exceptions: Objects that can be designated with the $-sign plus a name
($thing, etc.). Mailing lists, which begin with the asterisk symbol. Some commands
let you specify a player by name even if you aren’t in close proximity (@who Klaatu).
And often you can specify a distant player by name with the tilde (~):

look ~yib

will yield the same result as:

look #58337

(if #58337 is Yib’s object number).

On a MOO, everybody who’s anybody, and everything that’s anything, is an
object.

See also help objects.

Moving Objects

Chapter 2 included a discussion of how to move (yourself) around the MOO.
This section discusses moving other objects from one place to another.

A little about what it means to move an object: The system keeps meticulous
track of every object’s location. Specifically, every object has a property (a named
piece of data) which stores that object’s location in the form of an object number.
An object in the LambdaMOO Living Room, say, would have the Living Room’s

What’s Going On, Here? 39

object number in its .location property. (When naming a property, it is
conventional to precede it with the “.” character.) Reciprocally, while that object is
in the LambdaMOO Living Room, that object’s number will appear in the Living
Room’s .contents property. So: every object stores its location, and every location
stores a list of its contents. When an object is successfully moved in a MOO, three
things happen: The object’s .location property is changed to reflect the object’s
new location. The object is removed from the old location’s list of contents. The
object is added to the new location’s list of contents.

The most straightforward way to move an object is to take it or drop it.

Suppose I own an object named bright sparkly thing, but leave it lying
about in the driveway where anyone can find it. Shmool comes along and sees:

Driveway
A circular driveway, in front of LambdaHouse. The
LambdaHouse front door is to the south. The drive curves
away to the northeast and northwest; there is a spur to the
west, curving back around the house to the garage.
You see bright sparkly thing here.

Shmool types:

take bright sparkly thing

Shmool now has the bright sparkly thing in his inventory (the list of stuff he’s
carrying), and anyone looking at Shmool will see not only his description, but his
inventory as well:

l Shmool

Shmool
A 3 1/2 foot tall squirrel, bald but for a 3 foot ponytail,
with large and luminous violet eyes. A silver locket
dangles by a gossamer chain around his neck.
Carrying:
 bright sparkly thing

When Shmool took the bright sparkly thing, he changed the database, meaning
the .location of the bright sparkly thing changed, the .contents of the driveway
changed, and the .contents of Shmool changed. Note that if Shmool had merely
emoted,:takes bright sparkly thing, on the other hand, while it might appear
that he had taken it, it would in fact still be lying in the driveway.

Shmool might then type:

@go home
drop bright sparkly thing

to add it to his growing collection of stuff. The bright sparkly thing would be
removed from Shmool’s inventory and added to the contents of his room. If Shmool
keeps this up, his room will become quite cluttered! He might be moved to create a
treasure chest to put things in. Putting things into containers is another way to move
things. Shmool would type:

40 What’s Going On, Here?

put bright sparkly thing in treasure chest

and the bright sparkly thing would be moved again: Its new location would be the
chest, and the contents of Shmool’s room and his treasure chest would be changed
appropriately, too.

Eventually I notice that my bright sparkly thing is missing. Where could it be? I
look everywhere for it. Last seen in the driveway! I go to the driveway, but the
bright sparkly thing is gone. Some rascal has taken it!

I might search high and low, and on a MOO as big as LambdaMOO, or even on a
much smaller one, I might never find my object. If I cared to get my object back, this
is an occasion where I might choose to break the VR and start working with object
numbers. Specifically, I might want to teleport my object back to a location of my
choosing.

Remember that if you aren’t holding an object or in the same room with it (my
predicament), then you must identify it by its number. For a while, I just ignored all
those object numbers, and got along fine without them, but now I would really like to
know the object number of my bright sparkly thing! There is a way, by using the
@audit command. I type:

@audit

and the system prints out a list of objects (by number!) that I own, along with their
size, name, and location. Now I have the information necessary to teleport my bright
sparkly thing, either to myself or to my location or to a named object in my vicinity
or to a location whose number I know (aha, those numbers, again), using the @move
command. The syntax is:

@move <object> to <location>

Here are some of my choices, assuming that the object number of my bright
sparkly thing is #4612 and that I am in a room with a walnut desk that I use in lieu
of a treasure chest:

@move #4612 to here
@move #4612 to me
@move #4612 to a walnut desk
@move #4612 to #6193

 (On LambdaMOO, the last example would move my bright sparkly thing back
to the driveway.)

Getting Rid of Unwanted Objects

You may find yourself in the strange predicament that you are carrying
something, or something is attached to you, or something is in a room you own
which you would like to be rid of but which doesn’t respond to the @move command.
For this we have @eject. The syntax is:

@eject <item> from <location>

What’s Going On, Here? 41

If you’re holding it, then <location> would be me; if you want to eject a thing
from a room you own, then <location> would be here.

Information is power. In this case, if you know the number of a thing, you can
teleport that thing. There are some exceptions. (Aren’t there always?) An owner can
lock a thing in place, preventing people from taking it or otherwise moving it. An
owner can put conditions on moving an object. The owner of a room can prevent an
object from being dropped or moved there. (See locking, page 88) Lastly, on
LambdaMOO, the owner of an object can let people borrow it, and have the
housekeeper return it to a designated location when certain conditions are met.

Taking things that don’t belong to you falls into a category I call, “risky
behavior”. It isn’t strictly forbidden, and if you know how, it’s easy to undo. But it
also annoys some people, so think before you take.

Feature Objects

This section discusses Feature Objects, including an explanation of just what sort
of objects they are and how they work.

When you are connected to a MOO, you type things in and read text that
appears on your screen. The lines you type (except when you are being prompted for
data, for example when you are working within an editor) are commands. When you
type a command, you expect something to happen, either a change to the database
(e.g. changing your location) or perhaps simply the display of some informational
text from the database (e.g. looking at a room or a player). MOOs are user-extensible,
which means that users can create objects and can define (i.e. program) commands
associated with those objects, which you and others can then use. It is part of the
server’s job to consider the command you type in and divide it into its component
parts (command name plus optional arguments or direct object, preposition and
indirect object). The process of separating a command line into its component parts
is called parsing, and the parser is the part of the server that does this. Once the
command has been divided into its component parts, the server then tries to identify
an object that defines the command (verb) that you want to run. It conducts its
quest for an object defining the verb in a very particular order, as follows: (1) your
player object or player class or any of its ancestors, (2) any of a player’s feature
objects, (3) the room you are in, (4) the direct object (if specified and identifiable),
and (5) the indirect object (if present). If the parser finds that the command is valid
(i.e. defined on one of player, a feature object, the room, the direct object or the
indirect object), then the server tries to execute it. If the parser can’t find any
definition of the command on any of the objects it is supposed to consider, then the
system prints the text, I don't understand that.

A feature object (commonly referred to as a/an FO) is an object that exists solely
to serve as a repository for a set of commands that you might want to use, so that
when you type the command, the system executes it rather than displaying
everyone’s favorite, I don't understand that. The beauty of feature objects is
that for commands that lend themselves to this method implementation (some

42 What’s Going On, Here?

commands don’t), anyone can use them regardless of what player class e has selected.
This is why feature objects tend to have broad appeal.

Unlike objects that represent tangible things, such as chairs, candy, or rocks, you
don’t need to be holding an FO or in the same room with it in order to use it. Rather,
one adds a feature to oneself, which is another way of saying that one adds its
number to a list of feature objects one wishes to be able to use. To add a feature, you
have to know its object number. To find out a feature’s object number, you can try
asking the person who just used it, or you can type:

@features for <so-and-so>

to see a list of that person’s feature objects and their numbers. Then you can add it
by typing:

@addfeature <object-number> to me

So, if you notice that mockturtle is a thoughtful guy, and in particular much of
his text appears in typographical thought balloons instead of between double quote
marks:

mockturtle . o O (Can she read my toughts?)

You might say, “mockturtle, is that thought balloon verb on an FO?” And
mockturtle might quickly type @features for me to jog his memory and then say,
“Yes, it’s the ‘think’ verb on the Thinking FO, #10392.” And then you might type
@addfeature #10392 (and become more contemplative, yourself).

It’s possible to use a feature object command quite often and forget which
feature object it’s actually on. Then when someone asks you what FO a verb is on,
you might look at your list of features and still not know which one has the
command in question. In such a case you might take advantage of a verb called
@find. So instead of listing his feature objects, mockturtle might instead type:

@find :think

 (Note that the colon is part of the command), and the server would print on his
screen, The verb :think is on Thinking Feature(#10392).

Most feature objects have help text (e.g. help #10392) that list the commands
they offer and explain briefly what they do and how to use them.

On LambdaMOO, there is an exhibit in the museum dedicated to feature objects,
where you can read each one’s help text and then pick and choose the ones you
want. On other MOOs, you can type @kids $feature to see a list of all direct
children of the generic feature object, and then read the help text for those feature
objects that look like they might be of interest. It might be tempting to add all the
feature objects you can find, but remember: When parsing a command, the server
must consider all the verbs on you, your player class, its ancestors, all your feature
objects, the room you’re in, and possibly direct and indirect objects. The more feature
objects you add to yourself, the longer this process takes. It’s better to read the help
text for various features and then add only those features that you think you’ll
actually use.

The sequence in which you add feature objects can matter. If two feature objects
define the same command, the first one in your list of features is the one that will be

What’s Going On, Here? 43

executed. To change the order of your features, use the @rmfeature command to
remove the one that comes first, then re-add it to move it to the end of the list.

Player Classes

A player class is an object that provides or expands a set of commands available
for a player to use. To use a player class, a player changes eir parent to that player
class object, thus inheriting all its properties and verbs and all its ancestors’ properties
and verbs.

Recall that every valid object (except #1, the root object) has another object as its
parent. Players can change the parent of objects they own, including themselves, with
the @chparent command:

@chparent <object> to <new-parent-object>

The list of an object’s parents and ancestors is called its parent hierarchy. You can
look at an object’s parent hierarchy using the @parents command. The syntax is
@parents <object>. To see a list of your own parent and ancestors, type:

@parents me

 (If the system responds with I don’t understand that , ask a wizard to make
you a builder.)

Someone who has a fairly fancy player class (in this case on LambdaMOO) might
have a parent hierarchy that looks like this:

Yib(#58337)
Sick's Sick Player Class(#49900)
Sick's Slightly Sick Player Class(#40099)
Sick's Sick of Spam player class(#59900)
Detailed Player Class(#6669)
Generic Super_Huh Player(#26026)
Politically Correct Featureful Player Class Created Because
Nobody Would @Copy Verbs To 8855(#33337)
Player Class hacked with eval that does substitutions and
assorted stuff(#8855)
Experimental Guinea Pig Class with Even More Features of
Dubious Utility(#5803)
Generic Player Class With Additional Features of Dubious
Utility(#7069)
generic programmer(#217)
generic builder(#630)
Generic LambdaMOO Citizen(#322)
Frand's player class(#3133)
Generic Mail Receiving Player(#100068)
generic player(#6)
Root Class(#1)

mailto:@Copy

44 What’s Going On, Here?

A brand new player on LambdaMOO would have a parent hierarchy that looks
like this:

Bit_Blaster(#200119)
generic builder(#630)
Generic LambdaMOO Citizen(#322)
Frand's player class(#3133)
Generic Mail Receiving Player(#100068)
generic player(#6)
Root Class(#1)

A brand new player on another MOO would likely have a parent hierarchy that
looks like this:

New_Grrl_On_The_Block(#1438)
generic builder(#4)
Frand's player class(#90)
Generic Mail Receiving Player(#40)
generic player(#6)
Root Class(#1)

(Note, however, that this may differ, as the wizards of each MOO can change the
default starting player class for new players.)

In principle, it is vitally important to understand the workings of a player class
you adopt, and to trust its owner and the owners of its ancestors. You can use the
examine command to see an object’s owner; many MOO’s also provide a specific
command to do this, e.g. @owner. At the very least, you should be aware that the
owners of your player class and its ancestors are in a position to intercept and
monitor your pages, intercept and read your private MOOmail, change your name
and/or remove or change your aliases, and any number of other acts that you might
normally expect to be your prerogative alone.

In practice, people often select a player class based on the recommendation of
friends or experienced acquaintances, and trust the various player class authors by
reputation. The purist in me would like to say that one should acquaint oneself with
all the possible player class alternatives, read the help text and the verbs of each,
understand what each does, and then select a player class based on the
trustworthiness of the authors, and which is no fancier than one’s particular needs at
the moment. (The more elaborate the player class, the more quota your player-object
takes up.) Note that it is trivial to change your parent to a fancier descendent of your
current player class. It is less trivial to change to a different branch of the player class
“tree”, because doing so can mean having to give up messages or morphs (see
glossary) in which one may have invested a fair bit of time and creativity.

There is generally sufficient social pressure on player class owner/authors not to
spy or otherwise abuse their privileged position that it isn’t a common problem.
There was an incident several years ago on LambdaMOO in which the author of a
popular player class was accused of intercepting pages which his girlfriend received
from a perceived rival. There was an outcry when this was discovered, and the code
was revised to the satisfaction of all concerned. In another instance, a player dared
all comers to do their worst (the point being to demonstrate that in the face of any

What’s Going On, Here? 45

attack one could still MOO serenely without needing an arbitration system). The
owner of one of this person’s player class ancestors removed the challenger’s name
and aliases and changed them to something highly unflattering. The names and
aliases were subsequently returned to their original owner. These instances are rare,
but one should still be advised that adopting a player class entails a certain degree of
calculated risk.

One should be especially wary if a player class has unreadable verbs. Type:

@display <player-class-object>:

to list the verbs. (The colon is part of the command.)

Knowing the commands available to you will give you better use of them. For
more information about a particular command, try either of:

help me:<command>
help <command>

 (Help text had not been standardized at the time these early player classes were
written.)

Documentation for the oldest player classes that nearly every player on every
MOO has in common is sometimes non-existent or difficult to find; here is a brief
summary of what these basic player classes do. For a detailed explanation of any of
these commands, see the command summary in Appendix A

• Generic Player : Provides the most basic set of commands, including home,
help, @describe, @gender, @quit, @password, and @mail-options.

• Generic Mail Receiving Player: With the exception of @mail-options
which is (incongruously) provided on the generic player, this player class
provides all the commands for reading and sending MOOmail, including @mail,
@send, @read, @next, and @subscribe.

• Frand’s Player Class: Frand is one of LambdaMOO’s oldest and most venerable
and innovative players. So much so, in fact, that this player class is now included
in LambdaCore itself, and has been integrated into JHCore. Many of the verbs on
Frand’s player class can be said to “break” or “transcend” the VR, including @go,
@join, @addroom, @rooms, @ways, and @refuse.

• Generic Builder: This player class provides the minimum set of commands
needed to add objects to the MOO’s database, e.g. build rooms. They include
@create, @dig, @recycle, @chparent, @audit, @parents, @lock, and
@contents.

• Generic Programmer: In order to write programs on a MOO, you must have
this player class in your ancestry and have gotten a programmer bit (the usual
procedure for getting one is to ask a wizard). The programmer bit gives you the
authority to program; the generic programmer player class gives you the
necessary commands to do so. These commands include: @property, @verb,
eval, @program, @display and @dump.

mailto:@describe

46 What’s Going On, Here?

Setting Messages

Yib arrives in a shower of sparks.

Q: How does she do that?

A: With messages.

Recall that a property is a named piece of data associated with an object. A
message is a special kind of property whose name ends with _msg. The purpose of
messages is to give users a way to customize themselves and objects they own
without having to learn how to program. Many kinds of objects have messages.

To see a list of the messages on an object, type:

@messages <object>

Player objects have a great many messages, and each player class in a player’s
ancestry typically adds a few more, so typing:

@messages me

will probably generate a long list! Let’s look at two player messages:

@self_arrive #3133 is "%<teleports> in."
@oself_port #3133 is "%<teleports> out."

If you transport yourself within the MOO using either the @go or @join
command, the system will process these messages (prepending your name (if it is
absent) and conjugating the verb “teleport”) and then display them to the
appropriate viewers – at the location you are leaving and at your destination. To
customize my departures and arrivals, then, I would change these messages. There
are two syntaxes for doing so:

@set me.self_arrive_msg to "Yib arrives in a shower of sparks."
@set me.oself_port_msg to "Yib disappears in a sudden puff
of smoke."

or:

@self_arrive me is "Yib arrives in a shower of sparks."
@oself_port me is "Yib disappears in a sudden puff of
smoke."

Because silent teleporting (sneaking into a room without people knowing you are
there) is frowned upon in most MOOs, the system displays your name at the
beginning of these messages if it isn’t otherwise present. Furthermore, because some
players may have their gender set to plural, the default messages use the syntax
%<teleports> to signal that “teleports” is a verb that should be conjugated.

The messages on different player classes (including the ancestors of your player
class!) were created by different people at different times, and many of them were
created before some now-common conventions were established. Unfortunately,
many of them aren’t documented, or are documented poorly. Historically, people
figured out and set most of their own messages by listing them (@messages me),

What’s Going On, Here? 47

looking at the combination of their names and content, and (often) trying them out
with a friend.

Here, then, is a list of all the messages that you are likely have defined on your
player object as a new arrival on a MOO that uses LambdaCore, along with a few
comments about some of the messages’ idiosyncrasies. They are presented as if you
had typed @messages me, and the syntax for setting them is the same as that
displayed by the system when it lists them.

@more me is "*** MORE *** %n lines left. Do @more
[rest|flush] for more."

@more is the message displayed if you have used the @pagelen command to set
a fixed page length. The syntax [rest|flush] means that you have the option of
typing @more rest or @more flush to print all of the remaining output, rather
than just one additional page. Type @more by itself to see just the next page.

@page_absent me is "%N is not currently logged in."
@page_absent is the message that someone sees if e pages you when you are

logged off. In this message, your name will be substituted for %N.

@page_origin me is "You sense that %N is looking for you in
%l."

@page_origin is the message that someone sees as when you page em, before
the actual content of your paged text is displayed. Your name is substituted for %N
and the name of your location is substituted for %l.

@page_echo me is "Your message has been sent."
@page_echo is the acknowledgement message that someone sees when e pages

you.

@join me is "You join %n."
This message is displayed to you when you use the @join command to teleport

to another player’s location. The name of the player you are joining is substituted for
%N.

@object_port me is "teleports you."
This message is transmitted to an object it when you teleport (i.e. @move) it.

(See the section on moving objects, page 38.) Your name (followed by a space) is
automatically added at the beginning.

@victim_port me is "teleports you."
This message is displayed to a player if you teleport em somewhere. Your name

(followed by a space) is automatically added at the beginning.

@thing_arrive me is "%T teleports %n in."
This message is displayed to your location when you teleport an object either to

yourself or to the room you are in. Your name is substituted for %T and the name of
the object being teleported is substituted for %n.

mailto:@more

48 What’s Going On, Here?

@othing_port me is "%T teleports %n out."
This message is displayed to the room a thing is in (if it is in a room) when you

teleport that thing to a different location. Your name is substituted for %T and the
name of the object being teleported is substituted for %n.

@thing_port me is "You teleport %n."
This message is displayed to you when you teleport an object. The name of the

object you are teleporting is substituted for %n.

@player_arrive me is "%T teleports %n in."
If you teleport (i.e. @move) a player, this message is displayed to the room to

which that player is moved. Your named is substituted for %T and the name of the
player being teleported is substituted for %n.

@oplayer_port me is "%T teleports %n out."
If you teleport (i.e. @move) a player, this message is displayed to the room from

which that player is removed. Your named is substituted for %T and the name of the
player being teleported is substituted for %n.

@player_port me is "You teleport %n."
This message is displayed to you when you teleport (i.e. @move) a player. The

name of the player you are moving is substituted for %n.

@self_arrive me is "%<teleports> in."
This message is displayed to your destination when you teleport somewhere (e.g.

with @join or @go). Notice that it is not a complete sentence. Your name is
automatically prepended to the beginning of the message if it doesn’t appear
somewhere else within it. Setting this message to the empty string ("") will result in
a silent arrival, which is contrary to good manners, and in some places might be
construed as a form of spying. The construct %<teleports> causes the verb
“teleport” to be conjugated according to your .gender property.

@oself_port me is "%<teleports> out."
This message is displayed to your point of departure when you teleport out.

Again, your name is prepended if it doesn’t appear somewhere else in the message.
Setting this message to the empty string will result in a silent departure. While not
considered as bad as a silent arrival, it can be unsettling to others in the room not to
know that you have left. . The construct %<teleports> causes the verb “teleport” to
be conjugated according to your .gender property.

@self_port me is ""
This message is displayed to you when you teleport somewhere. It is blank by

default.

@page_refused me is "%N refuses your page."
This message is displayed to someone if e tries to page you but you have refused

pages from em. (See page 30) Your name is substituted for %N.

What’s Going On, Here? 49

@whisper_refused me is "%N refuses your whisper."
This message is displayed to someone if e tries to whisper to you and you have

refused whispers from em. Your name is substituted for %N.

@mail_refused me is "%N refuses your mail."
This message is displayed to someone if e tries to send you mail and you have

refused mail from em. Your name is substituted for %N.

