
79

Chapter 5 – Extending the Virtual Reality: Building

Overview

This section details the various ways to create rooms and other objects. It
amplifies what you already leaned about @dig. On nearly all MOOs, players start out
as members of the “generic builder” player class, which means that the building
commands are available to them.

Between the basics of communication, moving around, and interacting with
various objects on the one hand, and the intricacies of programming on the other, is
building. Building is the business of creating new objects on a MOO and modifying
them in certain limited ways. When you create an object, you first specify what kind
of object it is to be (a room or a container or a note, for example), and the object’s
name, with optional aliases. Then, typically, you describe your object, maybe set
some of its messages (see page 46), and the object is then ready to use. Some fancier
kinds of objects let you specify some additional information which might also govern
how the object behaves. An example of this might be where an object should go if it
needs to be “sent home”.

@create

@create <generic> named "<name>"

or:

@create <generic> named
"<name>","<alias1>","<alias2>",…,"<last alias>"

@create and @dig are the two quintessential commands of building. Each
creates a new object where there was none before.

There are a couple of ways to specify the kind of thing (i.e. the parent or generic)
you want to create. As always, you can specify the object by its object number, if you
know it. If the generic you want to create a copy of is in your vicinity (i.e. you are
either holding it or in the same room with it), then you can specify it by name. A
few objects are used so commonly that we can refer to them even if they are not
nearby, using the “$” sign. The generic thing is called $thing. The generic
container is called $container. The generic note is called $note. In this way, you
can create things and containers and notes without having to know the generics’
object numbers or have them in your vicinity. Let’s look at an example of creating a
very simple object, a paper weight:

@create $thing named "paper weight","paperweight","pw"

The system will print out something like:

mailto:@dig

80 Building

You now have paper weight (aka paperweight and pw) with
object number #63555 and parent generic thing (#5).

The actual number of your paper weight will be different. Do you have to
remember this number? Yes and no. As long as the paper weight is either in the
same room that you are in or is in your inventory (i.e. you are holding it), then you
can refer to it by name. And when you first create something, you are holding it.
That’s one reason why we use @dig (described further on) instead of @create for
rooms and connecting exits: so that you won’t be holding these things when they are
created. There’s nothing actually wrong with holding rooms or exits, but it doesn’t
make sense and serves no practical purpose.

@describe

The next logical thing to do is to describe your paper weight:

@describe pw as "An ovoid paper weight made of onyx. Though
perfectly smooth, it has the curious property that it gives
no reflection, almost as if it were an oddly-shaped black
hole. It does have the expected flat spot on the bottom."

There isn’t much you can do with a $thing. You can hand it to someone. You
can drop it. You can take it. That’s about it. To be sure, type:

examine paper weight

What you can do is change the text that you and/or others see when you hand it
to someone or drop it or take it. (Note that you don’t have to be a builder to set
messages on objects you own; I review it here because it’s the logical next thing to do
when crafting an object.) This is done through messages, and changing the messages
on an object is a quick and easy way to give it a bit of character. First, you might
want to list the existing messages:

@messages

@messages paper weight

The system will respond with the following list:

@drop_failed paper weight is "You can't seem to drop %t
here."
@drop_succeeded paper weight is "You drop %t."
@odrop_failed paper weight is "tries to drop %t but fails!"
@odrop_succeeded paper weight is "drops %t."
@otake_succeeded paper weight is "picks up %t."
@otake_failed paper weight isn't set.
@take_succeeded paper weight is "You take %t."
@take_failed paper weight is "You can't pick that up."

Building 81

Because your object is a child of $thing, it has inherited all its properties,
including all the messages that $thing has.

The purpose of most of these messages should be pretty clear from the
combination of their names and content. By convention, messages beginning with
“o” are told to others, while messages not beginning with “o” are told to the player
initiating the relevant action. The %t (think “this”) in each message substitutes the
actual name of the object. In general, most generics have their messages set so that
they make sense without any customization, but let’s change a few of these to
demonstrate the method. The syntax for setting messages is the same as the way the
messages are printed out above. Here are a couple of examples:

@drop_succeeded pw is "You drop %t. It lands with a thud,
then rolls a short distance before coming to a stop."

@odrop_succeeded pw is "drops %t. It lands with a thud,
then rolls a short distance before coming to a stop."

@recycle

Should you decide that you no longer want this object, you can get rid of it by
typing:

@recycle paper weight

and the system will respond with a line like:

paper weight (#63555) recycled.

You can only recycle objects that you own. If the object you wish to recycle is
not in your vicinity, then you can recycle it by object number instead of by name.
It’s good to recycle objects that you don’t use, as this conserves system resources.

Generic Objects

$things are useful as stage props. If you want to be seen carrying a feather
duster, for example, but don’t need to do any actual dusting, @create $thing
named "feather duster" will probably suit your purposes adequately. Other
generics, however, are capable of doing more. A good example of this is the generic
container, abbreviated $container. To make one, type (for example):

@create $container named "leather pouch","pouch","lp"
@describe lp as "A simple-looking leather pouch, of
remarkable capacity."

You can type examine pouch to see what actions you can actually do with it,
and @messages pouch to see if you want to change any of the associated messages.
Then if you want to you can put your paper weight in the pouch.

82 Building

Normally, one would (and should) investigate a generic before making an
instance of it. People tend to practice varying levels of due diligence in this regard,
but the appropriate steps (the sequence isn’t all that important) are as follows:

examine <generic>
help <generic>
@parents <generic>

Then repeat the above for each listed parent until you come to an object you
already know about.

Generics can be extremely complex. By using @create to make an instance
(think “clone”) of an existing generic, you get all its functionality without having to
do any programming. Building things based on existing generics also takes up less
space in the database than programming a new object from scratch, which is
desirable, too.

So then the question arises, “How does one know what generics there are to
make kids of?” Some of the basics are $thing, $container (you can open it, close
it, put things into it and take things from it), $note (you can edit its text and others
can read it), $letter (like a $note, but a designated recipient can burn it when e has
finished reading) and $mail_recipient (a MOO mailing list). These generics are
part of the LambdaCore, and are included in every database based on it. Players who
are programmers can create additional generics. These usually can’t be referenced by
a name beginning with a “$”; they have to be referenced by object number.

@parents

One way to learn about existing generics is to explore the MOO, examining
many objects, and when you find one that interests you, type:

@parents <object>

This command shows an object’s ancestry, and after the examine command it is
one of the most basic tools at your disposal to investigate an existing object.
Suppose, for example, you took an interest in a hot air balloon that you came across
in your explorations. You could type:

@parents Royal Blue Balloon

Royal Blue Balloon(#68806) Generic Hot Air Balloon(#66549)
Generic Aircraft(#42055) Generic Magnetic Portable Secure
Seated Integrated Detail Room(#58237) Generic Portable
Secure Seated Integrated Detail Room with Sensible
Locking(#17524) Generic Portable Secure Seated Integrated
Detail Room(#36643) Generic Secure Seated Integrating
Detailed Room(#9805) Area/Seat-Conscious Room(#5531)
Generic Secure Integrating Detailed Room (without
seats)(#156) Integrating Detail Room with Features(#21311)
Integrating Detail Room with Exit-Verb Matching(#8801)

Building 83

Integrating Detail Room Mark III(#17755) Modified Detail
Room(#11825) Frand's generic detailed room(#6464) Self-
Cleaning Room(#27777) generic room(#3) Root Class(#1)

Whew, that’s a lot! (You’ll find that some objects have very long pedigrees.)
You could then read the help text for the generic hot air balloon by typing help
#66549 and make an informed decision as to whether you actually wanted to create
one for yourself. Or you might decide that instead of a hot air balloon, a flying
carpet is more to your taste, in which case the generic aircraft might be a better
choice.

LambdaMOO also has a museum, as do some other MOOs. This is a room or set
of rooms whose purpose is to provide information about various generic objects that
are available, and it is a valuable resource.

Not every item is available as a generic; sometimes a programmer might make an
object but want to limit it to being one-of-a-kind. Before people can make their own
copies of an object the programmer of that object must make it fertile . (The
command is @chmod <object> +f, but that’s properly in a section about
programming rather than building. It’s included here for completeness.) If an object
is not fertile, you can’t make a copy of it, even if it has the word “generic” in its
name. You are out of luck unless you can persuade the owner to make it fertile.

@kids

This command is the opposite of @parents. You use it to list the children of a
given object. Note that it does not list kids of kids. Different MOOs have different
commands to list all descendents with one single command, but you can always use
@kids sequentially to explore various branches of the object hierarchy .

@audit

It is a common predicament to create an object (or a room, see @dig, below),
then misplace it and not be able to find it or use it because you’ve forgotten its object
number. For this we have the @audit command. There are two forms:

@audit
@audit <player>

The first audits yourself. It prints out a list of all the objects that you own, along
with their object numbers and sizes. The second form prints the same information,
except that it lists another player’s objects instead of your own. Other players can
@audit you and see a list of things that you own. Suppose I mislaid my paper
weight, and typed @audit to find it. I might see something like this:

Objects owned by Yib (from #0 to #118569):
 54K #58337 Yib [Yib's Study]
 4K #23920 Yib's Study

84 Building

 <1K #57744 a walnut desk [Yib's Study]
 2K #71354 white dendrobium orchids [Yib's Study]
 3K #32504 a linen handkerchief [Yib]
 <1K #35487 west Yib's Study->*Library Turret
 3K #107539 east *Library Turret->Yib's Study
 1K #71176 a few lucky Bits [Yib]
 1K #4612 bright sparkly thing [a walnut desk]
 3K #101204 a lady's pocket watch *[Boo]
 <1K #63555 paper weight *[Under the Couch Cushions]
-- 11 objects. Total bytes: 74,927.------------------------------

The numbers in the first column are the sizes of the objects in kilobytes of quota.
The second column is the object number and name of each thing I own, including
myself. The third column tells the name of each object’s location (in square
brackets); an asterisk(*) indicates that I don’t own the indicated location. If the
object is an exit, then the third column shows the names of the two rooms each exit
connects together, instead. Here you can see that my paper weight has somehow
found its way to a place called “Under the Couch Cushions”. I can retrieve it easily
by typing:

@move #63555 to me

@dig (rooms)

As mentioned previously, when you @create something, its initial .location
is you – that is to say, you will be holding it right after creating it. In the case of a
room, this is awkward, because holding a room doesn’t make sense (unless perhaps
it’s a portable room) and also, you can’t teleport into or otherwise enter a room if you
are holding it, because it would violate the containment hierarchy. (A can’t be located
inside B if B is located inside A). So, for rooms, we use the @dig command instead.
We also use @dig to create the exits which connect two rooms, because it
conveniently automates the administrative work of setting the exit’s source and
destination. Here are some examples of each form:

@dig Home Sweet Home

The system will respond with, Home Sweet Home (#113415) created, thus
informing me of the object number of my new room. (Note that the object number
of your room will be different.) Now I can teleport there, and describe it. If I ever
forget its number, I can always @audit myself to find out again.

The location of this new room is #-1 <$nothing>. You can think of it
floating free in the ether. Until you connect it to another room with exits (see
below), you can only get there by teleporting. There is nothing wrong with this, by
the way – many rooms are unconnected, and that’s just fine.

Building 85

@dig (exits)

An exit is a special kind of object that connects one room to another. It’s special
in that it isn’t located in either of the rooms it connects, but can be referenced by
name in the room that is its .source. The other room is the exit’s .dest (think
“destination”). To have a two-way connection between a pair of rooms, you have to
have two exit objects, one for each direction.

Digging an exit starts in the source room. You can dig exits one at a time, or two
at a time (one for each direction), you can specify aliases at the time you @dig or add
them later, and you can dig to an existing room or create a new room
simultaneously. Here are some examples:

@dig "east" to #115
would dig an exit named “east” to the room with the object number #115.

@dig "east","e","out" to #115
would dig an exit with the aliases “east”, “e”, and “out” to the room with object
number #115.

@dig "east","e","out"|"west","w","in" to #115
would dig two exits in opposite directions, connecting room #115 to the room you
were in when you typed the @dig command. The vertical bar (|) character separates
the aliases of the exit going to the room from the aliases of the exits leading back from
the room.

@dig "east","e","out" to The Back Porch
would create a new room named “The Back Porch”, and simultaneously create an
exit, east, from the room where you were to the new room.

@dig "east","e","out"|"west","w","in" to The Back Porch
would create a new room named “The Back Porch” and exits in both directions
connecting the porch to the room you were in when you typed the @dig command.

The system will print a line informing you of the object numbers of the new
exits (and, if applicable, the new room) that you’ve created with the @dig command.
As always, you can also get the object numbers of these newly-created objects using
the @audit command.

To make your building richer, it’s good to describe your exits and set their
messages. This is addressed in the section on room integration and exit messages,
starting on page 94.

Exit objects must designate the rooms they lead from and to; this is normally
done automatically as a side effect of the @dig command if you own both rooms. If
you don’t own the room the exit leads from, the owner of the source room should
use the following command to attach it:

@add-exit <exit-object>

86 Building

And if you don’t own the room that is the exit object’s destination, then the owner of
the destination room must use the following command to complete the connection:

@add-entrance <exit-object>

Exit attachment matters more for the source room, since without the
attachment, nobody can use the exit. If the exit leads to a room that has been set not
to allow teleportation via the .free_entry property, the exit can’t work unless it’s
attached. The principle, here, is that if a room permits a person to teleport in, then
the message generated by an exit is no worse than a teleport message. On the other
hand, if the owner of the room won’t let you teleport in, then you can’t dig your own
exit to the place, either. Or rather you can @dig the exit, but you can’t use it unless
the destination’s owner “blesses it” with the @add-entrance command.

@chparent

The @chparent command is typically used to change the parent of an object
from its current parent to another generic, usually (though not necessarily) an object
of a similar type. One might @chparent a room, for example, to a fancier -- or
merely different -- room generic. Likewise one might change the parent of an exit to
a transparent exit, or a generic gate, and one might @chparent oneself to a different
player class. For example:

@chparent me to #191

or:

@chparent here to #9805

@recreate

The @recreate command is basically a combination of @create and
@chparent. When you use @chparent, any properties and messages that you’ve set
that are in common with the new parent keep the values you’ve set them to. If you
really want to start over from scratch, but keep the same object number, then
@recreate is the command to use. The syntax is:

@recreate <object> as <parent> named <new name>

@set

Some objects permit some customization by letting you set the value of one or
more properties which in turn affect the object’s behavior. You can, for example,
modify the way a room’s contents are displayed by setting its .ctype property to

Building 87

different values. To the best of my knowledge, there isn’t any documentation about
the various possible values of .ctype, so I present a rather long illustration here.

@set <room>.ctype to 0
will list out the room’s contents, one item per line, in the order in which the items
entered the room:

The Front Veranda
A gloriously spacious covered veranda, painted all in white.
To the east, a large door leads into the mansion. Wide
steps lead west and down to the front lawn.
Contents:
 YibCo Muffle-Matic Soundproof Energy Field
 Rocking Chair
 a small wicker basket
 a white-washed wooden porch swing
 Yib

@set <room>.cytpe to 1
will put all non-player objects into separate sentences of the form, “You see <item>
here,” on separate lines, and all players into separate sentences of the form “<So-and-
so> is here,” on separate lines. The order will be the order in which items and players
entered the room:

The Front Veranda
A gloriously spacious covered veranda, painted all in white.
To the east, a large door leads into the mansion. Wide
steps lead west and down to the front lawn.
You see YibCo Muffle-Matic Soundproof Energy Field here.
You see Rocking Chair here.
You see a small wicker basket here.
You see a white-washed wooden porch swing here.
Yib is here.

@set <room>.ctype to 2
will list all the contents in a single sentence:

The Front Veranda
A gloriously spacious covered veranda, painted all in white.
To the east, a large door leads into the mansion. Wide
steps lead west and down to the front lawn.
You see YibCo Muffle-Matic Soundproof Energy Field, Rocking
Chair, a small wicker basket, a white-washed wooden porch
swing, and Yib here.

@set <room>.ctype to 3
will list items in one sentence, and players separately, in another:

The Front Veranda
A gloriously spacious covered veranda, painted all in white.

88 Building

To the east, a large door leads into the mansion. Wide
steps lead west and down to the front lawn.
You see YibCo Muffle-Matic Soundproof Energy Field, Rocking
Chair, a small wicker basket, and a white-washed wooden
porch swing here.
Yib is here.

If you set a room’s .ctype to anything else, the contents won’t display at all,
unless you have changed its parent to a room generic that supports additional
.ctypes. (Ideally, the room’s help text will mention this. To read a room’s help
text, type help here while in the room or help <room object number> if you are
not in the room.)

Using @set with Messages

A message is a property on an object that ends with “_msg”. These properties are
special in that they can be set as described in the larger section on messages (see page
46), and that is the way it is usually done. But message properties can also be set
and/or changed using the @set command, just like any other property of an object.
If you had a paper weight with the alias “pw”, then the following two commands
would have an identical result:

@drop_succeeded pw is "You drop %t. It lands with a thud,
then rolls a short distance before coming to a stop."

@set pw.drop_succeeded_msg to "You drop %t. It lands with a
thud, then rolls a short distance before coming to a stop."

@contents

One advantage of being a $builder is that you don’t have to depend on a
room’s description (or any object’s description) to find out what its contents are. You
can type:

@contents <object>

and get a list of its contents by name and number. Like all of the commands
presented in this segment, it is a meta-VR command, which crosses the boundary of a
MOO’s theme into its underlying structure. The trade-off is some of the VR charm
for increased informational accuracy.

@lock

As a builder, you can control some of the ways your objects are used. The easiest
way is with the @lock command. @lock works differently with different kinds of

mailto:@set

Building 89

objects, and that can make it seem a bit tricky, but it’s easy once you get the hang of
it. Briefly, if you lock a room, that governs what can and cannot enter it. If you lock
a thing or a container, that governs locations to which it can and cannot be moved.
And if you lock an exit, that governs who (or what) can and cannot pass through it.
The syntax of the command is:

@lock <object> with <key>

To use @lock effectively, you need to understand the concept of a key. A key is
a string of text that represents objects and ways that they can be combined. Briefly,
“&&” means “and”, “||” means “or”, and “!” means “not”. These can be combined
in various ways. For example, if my object number is #97, and Ostrich’s object
number is #891, then “#97 && #891” means “Yib and Ostrich”, “#97 || #891”
means “Yib or Ostrich”, and “!#97” means “not Yib”. You can combine any number
of objects in any number of ways. Use parentheses to clarify complicated
expressions. (See also help locking and help keys online.)

The reverse of locking an item is:

@unlock <item>

Containers offer the additional option of:

@lock-for-open <container> with <key>

and:

@unlock-for-open <container>

This governs who can open a container, as opposed to who may take a container
or where a container may be dropped.

@build-options

There is an interface called an options package that lets you customize the way
some of the building commands work. To list your current option settings type:

@build-options

Most MOOs support four builder options; this section explains how to set and
clear each of them, and what each of them means.

@build-option dig_room=<room-generic>
When you @dig a room, you are creating a child of a particular room. In most

cases, this is $room, which is the generic room provided by the MOO. After digging a
room, you may wish to use the @chparent command to select a different room-
generic as the room’s parent. If you have a favorite room generic and want all the
rooms you dig to have that generic as a parent, you can specify that with this option.
To clear this option and make it so that all rooms that you subsequently @dig use the
system default, type @build-option -dig_room.

@build-option dig_exit=<exit-generic>

90 Building

As with rooms, when you @dig an exit, its parent is set to a particular generic
exit, usually $exit. If you wish to specify a different generic exit as your default, you
can use the dig_exit builder option to specify a generic, and all exits you @dig after
that will be kids of the generic you specified. To clear this option and make it so that
all exits you subsequently @dig use the system default, type: @build-option -
dig_exit

@build-option create_flags=<flags>
This option governs the permission settings that will be associated with every

object you create. An object can be readable by others or not, writable by others or
not, and fertile or not. Readable means that others can list the properties on your
object. Writable means that others may add or remove properties and/or verbs from
your object. CAUTION! It is almost never a good idea to set an object to be writable.
Better to use available facilities or get a wizard to change ownership of an object to a
different person if you want to let someone else assist you with your building. Fertile
means that other people may make kids of your object. The value for <flags> in
this builder option can be any substring of "rwf", or it can be the empty string "").

@build-option -bi_create
@build-option +bi_create

When you create a new object, the system will either re-use a previously-recycled
object, or it will create a new object with a higher object number than all previously-
created objects. It is better for the database if you use recycled objects, which is the
“-bi_create” option.

@quota

 Quota is the term we use to measure the amount of space that objects take up in
the computer’s memory. Building things takes up space in the database, and players
are usually granted a fixed amount of quota to start with. In LambdaMOO’s early
days, players were allotted a fixed number of objects that they could create. An
unforeseen consequence of this was that people programmed fancier and fancier
objects which took up more and more space, culminating in the generic multi-room,
which was a room that simulated many rooms but which was, in fact, still a single
object. LambdaMOO then converted to what is called “byte-based quota”. A player
may create as many objects as e wishes, except that the total size of all the objects
may not exceed a specified limit. (If it does, then the player can’t create new objects
or add properties to existing objects.) The command:

@quota

will display how much quota you have used up with the objects you have created,
and how much you still have available for creating new objects. You can also type:

@quota <player>

to see how much quota someone else has available, and how much e has used up.

Building 91

Different MOOs will have different policies regarding whether they use object-
based quota or byte-based quota, how much quota players are allotted when they first
register, and how to get more quota. LambdaMOO has an elected Architecture
Review Board (ARB) which reviews quota requests against certain criteria; in addition,
LambdaMOO players can transfer quota directly to one another. On other MOOs,
wizards will set quota policy.

Trimming Down Your (Quota) Size

@measure

The amount of quota an object takes up can change. Consider a note that has
only a few lines of text in it. Then its owner edits it to be an extremely long note.
Now it takes up more quota. The system has a single object-measurement task, and
individual objects are generally measured only once every few days. Thus, the
information provided by @quota may not be up-to-date. This shouldn’t matter
unless you are over quota and are trying to “slim down”, as we say, perhaps in order
to be able to create another object. In addition, you are only permitted to have a
certain maximum number of unmeasured objects at a time (ten, on LambdaMOO),
and after that you may not create more objects until the new objects have been
measured. The @measure command, in its several variations, is provided so that
players don’t have to wait for the automatic measurement task to run if they need or
want to have an object measured sooner than that. The tradeoff is that measuring
things takes up computational resources, contributing to lag, and players are asked to
use this command sparingly.

@measure object <object>
This command is used to measure a single object at a time, in lieu of waiting for

the background measurement task to get to it.

The first step for trimming down is to use the @rmm command to remove any
MOOmail messages that you don’t need to keep. (You can use the @netforward
command to forward messages to your registration email address before removing
them, too.) These removed messages are not entirely gone, yet. The next step is to
expunge the removed messages. You can do that in either of the following ways:
@renumber me renumbers all your MOOmail messages and expunges deleted
messages. @unrmm expunge on me expunges removed messages without
renumbering them. Last, type @measure object me and @measure summary, to
measure and record your new (smaller) size.

@measure summary
@measure summary <player>

The @quota command does not itself measure objects. Rather, it prints out
summary information that was computed at an earlier time. @measure summary will
tally up the current total of your object sizes for reporting by the @quota command.

mailto:@measure

92 Building

@measure new
@measure new [<player>]

In a MOO that uses byte-based quota, you can only have a fixed number of
unmeasured objects. After that, you can’t create any new objects until the current
ones have been measured. This can be a problem if you need to create a large
number of small objects. They don’t take up more than your allotment of quota, but
still you can’t @create more until they’ve been measured. The symptom of this
particular problem is an error message that reads, “Resource limit exceeded.”
@measure new alleviates this. Once the new objects have been measured, you can
go on to create more if you want to. If you are assisting someone with this dilemma,
you can type @measure new <person> to measure that person’s new objects instead
of your own.

@measure recent [<number of days>] [<player>]
This measures those objects (yours or the specified player’s) that haven’t been

measured either in the specified number of days, or, if no number of days is specified,
the ordinary cycle of the measurement task. If no player is specified, then it measures
your objects.

@measure breakdown <object>
If you just can’t figure out why an object is SO BIG, the @measure breakdown

command will print a list of how much space each property and verb takes up, and,
hopefully, provide you with some clues. You can optionally have the output sent to
you via MOOmail, but be aware that the message itself takes up quota.

@newmessage, @unmessage

In general, only programmers can add properties to and remove properties from
an object, but builders can add and remove message properties. This is a pretty
obscure aspect of building, and I’m only going to treat it briefly. There are a very few
occasions where different things will happen depending on the presence or absence
of a certain message properties. Some room descriptions will incorporate an object’s
.look_msg property, if present. If an object has a .carried_msg property, some
player classes will integrate the message into a player’s description.

A builder who does not have programming privileges can still add a message
property as follows:

@newmessage <message-name> [<message>] [on <object>]

and remove a message from an object if it is no longer wanted or needed:

@unmessage <message-name> [from <object>]

mailto:@unmessage

Building 93

@check-chparent

This command would be useful if you had added a message to an object, then
tried to change the parent of that object to a generic that also had the same message.
An object can define a property or inherit it, but not both. Programmers probably
find more use for this verb than builders.

Creating a Mailing List

Building a mailing list is a popular thing to do, but requires extra steps so others
besides yourself can use your mailing list, too. First, create the list, using the generic
mail recipient as a parent:

@create $mail_recipient named <new list name>

Next, give your list a description, explaining what its intended topic is:

@describe <your list> as "<description>"

Then, to make it a public list that anyone can read and to which anyone can
post, do:

@set <your list>.readers to 1

Last, to make your mailing list publicly available so that people can subscribe to
it, do:

@move <your list> to $mail_agent

Note that $mail_agent won’t accept a list that lacks a description. See also help
$mail_recipient.

94 Building

Room Integration and Exit Messages

Integrating objects into a room’s description, adding messages to exits, and (to a
lesser extent) describing exits can enrich a user’s VR experience at the expense of
relatively little effort on the part of a builder. This extended example illustrates each
of these techniques.

Suppose you have a front room and a porch, situated east-west relative to each
other, and a screen door in-between:

 +-----------+
 | |---------+
 | Front | |
 | Room
 | | |
 | | |
 +---+--- -+----+ Porch |
 | | |
 | Kitchen | |
 +----------+--------------+

The Front Room
You are in the front room of a guest cottage. There are a
few chairs and a braided rug. A small kitchen is to the
south. There is a screen door to the east.

Porch
You are on a breezy, screened-in porch. A rocking chair and
a porch swing invite you to stay and relax for a while. A
screen door leads west into the cottage, steps lead down to
the lawn.

Here are the steps you would follow to make an integrating room with exit
messages:

1. Start by making the rooms’ descriptions clearly mention the obvious exits, so
that people don’t have to guess or use meta-VR commands such as @ways, since this
is intended to be a welcoming place for people to visit, and not a puzzle.

2. Describe the exits. This means describing what someone would see if they
looked in the direction of the exit, for example, look east.

Stand in the front room and type:

Building 95

@describe east as "You see a weathered but sturdy screen
door, held closed by a spring. The top screen has a small
tear in the lower left-hand corner."

Stand on the porch and type:

@describe west as "You see a weathered but sturdy screen
door. The handle and hinges are rusty but serviceable. The
top screen has a small tear in the lower right-hand corner."

Notice that in writing these descriptions, I have implicitly decided that the door
opens outwards onto the porch -- that’s the side that the hinges are on. We can use
this detail later to intensify the “VR feel” of things. The descriptions don’t have to be
elaborate, but it’s nice if they add some new information to what’s already there in
the rooms’ descriptions.

3. (Optional, but nice) Use look_msgs for the exits’ descriptions instead of
describing them in the room’s description proper. (Yes, this contradicts step 1.) The
reason for doing this is so that the exits will consistently be mentioned at the end of
the description, no matter how many other objects’ .look_msgs are included.

Some rooms can integrate objects and exits into their descriptions.15 By
convention (on LambdaMOO and YibMOO at least), an integrating room checks to
see which objects and exits have a .look_msg property and/or a :look_msg verb,
and, if so, incorporates those messages into the description instead of baldly listing
the them in the room’s contents afterwards (in the case of objects).

Why bother with this? Lets start by redescribing our Front Room, which had
exits leading southwest to the kitchen, stairs leading up, and our east exit onto the
porch. And let’s put in a fireplace object, so we can see how the .look_msg
properties interact. Starting with no look_msg properties on any objects or exits:

The Front Room
You are in the front room of a guest cottage. There are a
few chairs and a braided rug.
You see fireplace here.

@prop south.look_msg "A small kitchen is to the south"
@prop east.look_msg "There is a screen door to the east."

Now if we were to look at the room, we’d see this:

The Front Room
You are in the front room of a guest cottage. There are a
few chairs and a braided rug. A small kitchen is to the
south. There is a screen door to the east.
You see fireplace here.

15 One integrating room generic on LambdaMOO is #17755 (Integrating Detail Room Mark III). See

also #9805. On YibMOO, you can use the YibCo(tm) Multi-Media Modular Room (#237) in conjunction
with the Integrating Description Module (#259).

96 Building

This is strikingly like what we had before, but watch this. Now we’ll put a
.look_msg on the fireplace, too:

@prop fireplace.look_msg "Against the west wall is a large
stone fireplace."

Now the description becomes:

The Front Room
You are in the front room of a guest cottage. There are a
few chairs and a braided rug. Against the west wall is a
large stone fireplace. A small kitchen is to the south.
There is a screen door to the east.

We could add a painting (assuming you have an object that is a painting):

@prop painting.look_msg "A portrait of someone, vaguely
familiar, hangs on the north wall."

The Front Room
You are in the front room of a guest cottage. There are a
few chairs and a braided rug. Against the west wall is a
large stone fireplace. A portrait of someone, vaguely
familiar, hangs on the north wall. A small kitchen is to
the south. There is a screen door to the east.

The beauty of it is that you can integrate any number of objects into the middle
of the description, and still have the exits described at the end, where they are easy to
find.

4. Give the exits messages. Exit messages govern what the player sees and what
others see when a person goes through the exit. There are six to set (besides
.look_msg):

@leave <exit> This is what the player sees when e leaves by an exit.

@oleave <exit> This is what other people in the room see when a
player leaves by an exit.

@arrive <exit> This is what the player sees after passing through the
exit and arriving at the new location.

@oarrive <exit> This is what others at the destination see when the
player arrives.

@nogo <exit> This is what a player sees if he can’t get through the
exit for any reason.

@onogo <exit> This is what other people in the room see if a player
tries an exit but can’t get through.

Pronoun and verb substitutions are addressed at length in the programming
tutorial (see page 108), or you can read the online help text in help pronouns.

Building 97

Briefly, %n substitutes the name of the player, %s is the subject pronoun
(he/she/e/etc.), %p is the possessive pronoun (his/her/eir/etc.), %r is the reflexive
pronoun (himself/herself/emself/etc.), %o is the object pronoun (him/her/em/etc.).
These are the ones most commonly used for exit messages. There are others. Third
person singular verbs, when surrounded by angle brackets (<>) and preceded by the
percent sign (%) will agree with the gender of the player. Specifically, the messages
will print correctly even if player’s gender is set to plural. For example:

%N %<goes> through the door.

would yield:

Yib goes through the door.

but:

Bits go through the door.

Let’s start with the east exit from the front room to the porch, then do the west
exit from the porch to the front room. It’s easiest to add the messages if you are in
the room that is the exit’s source, rather than the destination. (If you are elsewhere,
you’ll have to refer to the exits by their object numbers rather than by name.)

Starting in the Front Room:

@leave east is "You push open the screen door and head out
to the porch."
@oleave east is "%N %<pushes> open the screen door to the
east and %<heads> out to the porch. The door slams shut
behind %o."
@arrive east is "The screen door slams shut behind you with
a bang."
@oarrive east is "%N %<comes> out through the screen door to
the west. The door slams shut behind %o."
@nogo east is "You push on the screen door, but someone
seems to have nailed it shut."
@onogo east is "%N %<pushes> on the screen door, but someone
seems to have nailed it shut."

Now for messages on the exit going the other way. From the Porch:

@leave west is "You pull open the screen door and head into
the cottage."
@oleave west is "%N %<pulls> open the screen door to the
west and %<goes> inside. You wince as the door slams shut
behind %o."
@arrive west is "The door slams shut behind you."
@oarrive west is "%N %<comes> in through the door to the
east. You wince as it slams shut behind %o."
@nogo west is "You try the door, but it seems to be nailed
shut."
@nogo west is "%N %<tries> the screen door, but it seems to
be nailed shut."

98 Building

A few comments:

It’s good for the oleave (and sometimes oarrive) messages to mention the
compass direction (if there is one). This helps others keep their bearings of where
they are and what’s beyond. It’s especially good for when one player is following
another.

Often it’s sufficient to set only the leave message or only the arrive message,
rather than both, such as when a player is going through an open doorway, for
example. In the above example, I used the screen door slamming for the arrive
message, to add to the effect.

If the exit is likely never to be locked or otherwise impassable, it’s acceptable to
omit the nogo and onogo messages.

Give some thought to who hears/sees what. I wanted to embellish the feel of the
door slamming, and did that by having people wince, but didn’t want to bombard
them with it by using it in every single message. I chose to have people on either side
of the door wince when someone goes in, but no one wincing when someone goes
out. The choice was arbitrary, but deliberate. Paying attention to small details will
give your work a richness that it might otherwise lack.

This may seem like a lot of work on top of @dig (voilà, you have an exit), but
exit descriptions and messages give areas on the MOO a much stronger VR feel, and
make any area more fun and interesting to explore. The messages don’t have to be
fancy, but they should be appropriate to the situation

Determining a Room or Object’s Contents Definitively

Let’s revisit the fact that every object has a property called .contents, which is
either a list of object numbers or the empty list. Each of those listed objects will
reciprocally have this object in its .location property.

Normally, when you look at a player, you will be presented with a list of things e
is carrying, and when you look at a room, you will be told about things you see there.
There are ways, however, for a programmer to camouflage or conceal what is in a
room, container or player, and there are ways to circumvent such programming. First
I will discuss camouflaging, then circumvention.

Integration – The basic room class shows you the room’s description, then lists
the non-player objects in it, then the players present:

The Conservatory
You are in a glass-sided room filled with orchids,
bromeliads, and other tropical plants.
You see trowel here.
Gardener is here.

A room class that supports object integration, on the other hand, will check for a
special property on the objects within it and integrate that text into the description
itself. The property usually has the name .look_msg. If our conservatory were an

mailto:@dig

Building 99

integrating room, and if the trowel had a .look_msg saying, “Off to one side is a
trowel,” then the room’s description would look like this:

The Conservatory
You are in a glass-sided room filled with orchids,
bromeliads, and other tropical plants. Off to one side is a
trowel.
Gardener is here.

Integrating objects into a room’s description has advantages and disadvantages.
The main advantage is that the text is more pleasing to read, and many builders
choose integration for this reason, rather than from any intent to deceive. The
disadvantage is that the hapless explorer might now overlook the fact that the trowel
is an object (which might be interactive or relevant to the scene at hand) or would
have to spend time trying to examine the orchids and bromeliads which are merely a
part of the description and not actual objects. A practiced MOOer might realize that
in integrated rooms there is typically one sentence per integrated object, and
therefore guess that “orchids, bromeliads, and other tropical plants” are so-called tiny
scenery and that the trowel is a bona fide object, but there is no reliable way to tell for
sure just by looking.

Darkness – Rooms have a .dark property, which, if set to a non-zero value
suppresses the display of the room’s contents. Such a room might have a clue in its
description about how to turn on the light, such as, "As you grope around in
the dark, your hand encounters a string," that, when pulled, turns on a
light.16

The way to circumvent such techniques is to use the @contents verb. It isn’t as
pretty, but it’s useful if you’re on the prowl for objects that might do something.
Consider this example:

Undertaker's Cottage
This front room of the cottage is reminiscent of an old-
fashioned parlor, the kind one never actually went into. At
one end, an overstuffed couch, at the other a stone
fireplace. In between, six French Empire chairs, facing
each other gloomily, three and three. Off in a corner sits
an ancient pump organ. On one of the walls is a collection

16 Here’s a bit of behind-the-scenes technology. It may not be of immediate interest if you are a

beginner (and you can safely skip over it if it doesn’t make sense right now), but it may be of interest
further down the road, or if you are an intermediate-level MOOer.

When you enter a room, that room’s :look_self verb is called. This verb in turn calls the room’s
:description verb which assembles the text which will be displayed as the description, and it also calls
the room’s :tell_contents verb which does the actual work of printing out what objects and players you
“see” when you enter or look at the room. The :tell_contents verb calls the :contents verb which
usually returns the value of the room’s .contents property BUT a room’s owner, can, if e wishes, cause the
:contents verb or the :tell_contents verb to give incomplete or spurious information. In the case of a
room with integrated objects, the :description verb tells you more (the integrated objects are integrated)
and the :tell_contents verb tells you less (integrated objects are omitted, so as not to be mentioned
redundantly). So in the quest for more pleasant prose, information is regrettably lost (i.e. which nouns in
the description represent actual objects of possible interest).

100 Building

of portraits. Doors to the northeast and southwest stand
slightly ajar, as if someone were beyond them, watching...
or waiting. Everything is covered with a layer of dust.
Cold stone steps lead down into darkness.
You see The Undertaker and Epitaph Registry here.
Yib is here.

@contents here
Undertaker's Cottage(#101792) contains:
The Undertaker(#666) a fireplace(#78070) pump
organ(#73881) Collection of portraits(#14627) Epitaph
Registry(#15588) Yib(#58337)

If you were exploring this room to see what might be done here, you would
examine the undertaker, the fireplace, the pump organ, the collection of portraits,
and the epitaph registry. You wouldn’t bother with the overstuffed couch, the
empire chairs, the dust or the cold stone steps.

To summarize, then, objects can contain other objects. The contained objects
are stored as a list of object numbers in a property named .contents. There is a
:contents verb which usually returns a complete list of an object’s contents, but
which can also be programmed not to do so. The @contents command displays a
definitive list of an object or room’s contents, irrespective of other programming.

