
101

Chapter 6 – Programming

A Brief Overview of What it Is and How it All Works

Building transcends the VR in that when you @create objects and @dig rooms
you are using the system as a computer system rather than acting strictly within the
bounds of the MOO’s frame story or virtual reality. Programming takes things one
step further, in that you create new and original ways for objects to behave. This
section presents an abstract overview of how that process works. The following
section, “Yib’s Pet Rock”, is a hands-on tutorial.

First Principles

I take on faith the mechanics of how text travels from your keyboard to the
MOO and from the MOO to your screen, and ask you to do so as well. At some later
time you may wish to investigate these for yourself, but they are beyond the scope of
this book.

The MOO is made of two principal parts, the server and the database .

The Server

The server is the program that runs on the MOO’s host machine. It accepts new
connections, interprets the commands you type, causes various things to happen in
the database because of what you type, and causes some text output to appear on your
screen. A command is precisely a line of text that you type with the intention of
getting a response from the MOO. This cycle, you typing a command, the server
executing it, and output (usually) displaying on your screen is referred to as a task, or,
more accurately, a foreground task.

The Database

The database is the entirety of all the objects on the MOO, including all their
properties and verbs. (The core database is the database that is there when a new MOO
first starts, before any new objects, properties, or verbs have been added.) A property is
a named piece of data associated with a particular object. Where do properties come
from? They are added to objects on an as-needed basis by programmers, using the
@property command. A verb is a named sequence of instructions that the server
carries out (or executes). On MOOs, the terms program , command, and verb are often
used interchangeably.

102 Programming

The Parser

A command consists of one or more words that you type, separated by spaces.
One of the things that the server does is analyze (parse) the line of text that you type,
and try to identify which verb on which object it should execute. The part of the
server that does this is called the parser. The first word of the command you type is
the name of the verb. The rest the words you type (if any) are called arguments,
which are items of information that the verb needs in order to work properly. Let’s
consider a few example commands and talk about their arguments:

take rabbit from hat
put hat on table
pet rabbit
page help I'm trying to understand parsing, can anyone
explain it to me?
home

For every command, the parser tries to identify an object with a verb of that
name on it that it can run, and it considers sets of objects and their associated verbs
in a particular sequence. This sequence is the player emself, any feature objects that
the player has, the room the player is in, the direct object of the command, and the
indirect object. Looking at these examples, you might intuitively figure out that if
there is a hat nearby, with a verb that lets one take things from it, that might be an
appropriate verb to run, and you would probably be right. Then, if there is a table
in the vicinity, and a verb that lets one put things on it, that might be an appropriate
choice, and so on. Some commands, like page and home don’t take direct objects,
prepositions, and indirect objects. They take other items of information instead, or
no information.

When a programmer creates a verb, e must specify what arguments (if any) the
verb uses. These are called argument specifiers . When the parser identifies an object
and a verb with argument specifiers that are appropriate to the command that was
typed in, we say that it matches the object or matches the verb on the object.

If the parser can’t identify an object with an appropriate verb to run, the server
sends the following text to your screen:

I don't understand that.

Tasks

As mentioned above, the cycle of your typing in a command, the parser
matching an object and a verb to run, and then output (usually) appearing on your
screen is called a foreground task. There are three basic kinds of things that any task
can do: It can send information (text) to be displayed on your screen. It can modify
the database in one or more ways, including changing the values of properties or
even creating new verbs to run in future tasks. And it can start up another task that
does something else, either later or at the same time, but independently. These tasks
are called background tasks. They can do the same three things that foreground tasks

Programming 103

do, including starting up additional background tasks. Every background task has a
unique numerical identification number called its task_id. A list of background
tasks (identified by task_id) that are scheduled to run at a later time is called a
queue.

How Are Properties and Verbs Created?

There are two commands that are fundamental to the programming process, and
these are @property and @verb. Like any other command, someone types them in
(with some arguments), the parser figures out which object is to receive the new
property or verb, and then the server runs the verb that causes new properties or
verbs to be added to an object.

The @property Command

The syntax for adding a new property to an object is:

@property <object>.<property name> <initial value>
[<permission flags> [<owner>]]

The property name can be anything you want except that it may not contain
any spaces. The initial value can be anything you want, but text should be enclosed
within double quotes (""). The permission flags can be any combination of the
letters “r”, “w”, and “c”. They govern who else may access those properties. (A flag is
a tiny bit of data, usually stored as a 1 or a 0 (often though not always signifying
“yes” or “no”) within a larger piece of data.) If you include the letter “r” in the
permission flags, then anyone may read the value of this property, and anyone’s verb
may access and use the value of this property. If you include the letter “w” in the
permission flags, then anyone may change the value of the property, and anyone’s
verb may change the value of the property. The “w” flag is hardly ever used; there are
safer ways to permit others to vary the value of a property in limited ways that you
control. The “c” flag controls who is allowed to change the value of the property in
the case that someone else makes a child of your object. If you include “c” in the
permission flags, then the owner of the child object can change it, and your verbs
can’t change it. If you don’t include “c” in the permission flags, then your verbs can
change the property’s value, even on child objects owned by others, but the owners
of the child objects can’t change the value of the property directly. This is a concept
that many people wrestle with, so don’t be discouraged if it doesn’t make sense right
away. It’s mentioned several times in the “Yib’s Pet Rock” tutorial (page 108), and
explained again in the programming reference section (page 156).

When a letter is included as a permission flag, we say that that flag is set . When
a letter is omitted from the permission flags, we say that that flag is clear. For
example, the “r” flag is usually set, and the “w” flag should almost always be clear.

104 Programming

The @verb Command

The syntax for adding a new verb to an object is:

@verb <object>:<verb name> <direct object specifier>
<preposition specifier> <indirect object specifier>
[<permission flags> [<owner>]]

The verb name can be anything you want except that it may not contain any
spaces and should not begin with the asterisk character (*). The argument specifiers
are three generalized expressions of the direct object, preposition, and indirect object
that are used by the parser when trying to match a verb to run. The direct object
specifier and indirect object specifier can be either this or none or any. The
preposition specifier may be either any, none, or one of the list of permissible values
(such as in or on) given in the Programmer’s Reference Manual and the
programming reference section (see page 163). The permission flags for a verb can be
any combination of the letters “r”, “x”, or “d”. If the “r” flag is set, then others may
read the verb. If the “x” flag is set, then other verbs may use this verb as an
intermediate step in their own execution. The “d” flag is obsolete but should always
be set; it used to govern whether an error, if one was encountered, should cause the
verb to cease executing immediately and produce a traceback or be ignored. A later
version of the server provided other ways to handle error conditions without causing
tracebacks; nevertheless, the programmer’s manual indicates that while obsolete, the
“d” flag should always be set17. A wizard can set the owner of the verb to be someone
other than emself.

Here’s an example of adding a new verb to an object:

@verb collage:paste any onto this rxd

 (Such a verb might be used to program a collage object so that you could paste
anything onto it to create a work of art.)

 ’Round and ’Round We Go…

After a verb is added to an object, a programmer then sets to programming it, i.e.
specifying, in terms the server can understand, just what it is that the verb is to do,
either with the @program command (explained in the programming tutorial, page
108) or using the verb editor (explained in the section on using the in-MOO editors).
Programming is an “iterative process”, which means that it usually takes several tries
before a verb works just the way it was originally intended to.

17 Pavel Curtis, The LambdaMOO Programmer’s Manual, section 2.2.3.

Programming 105

The Nitty-Gritty: What Goes On Inside All Those Verbs?

In a nutshell, verbs start up, process data, and then finish.

Starting Up

When you type a command, the first word of what you type is the name of a
verb, and you are said to be “invoking that verb from the command line”.
Sometimes these verbs are called command-line verbs . Other verbs, though, are only
meant to be invoked (or called) from within other verbs – they perform some
intermediate function and return a result, which the calling verb then uses as if the
function had been written into the calling verb itself. These verbs, called from other
verbs, are called subroutines. Regardless of whether a verb is a command-line verb or a
subroutine, all verbs do some initial start up processing when they are called or
invoked, and this consists of setting up some variables.

A variable is like a property in that it is a named piece of data. Unlike a property,
however, a variable only exists and has meaning while a verb is running. Also unlike
properties, variables aren’t stored with objects – so they can’t be accessed by other
players or other verbs. We say that they are “internal to the verb” or local, whereas
properties are “external to the verb” or global. In the MOO programming language,
variables are said to be dynamically allocated, which is a fancy way of saying that as
soon as a line of MOO-code assigns a value to a variable, voilà! that variable comes
into being and contains the value that the verb just assigned to it.

There are different kinds of values that variables can hold, and in the computer
world, “kinds of values” are referred to as data types. In some programming
languages, you have to specify at the beginning of a program what variables will be
used and what kind of data each will hold. A counter, for example, might be of type
integer, while a variable intended to hold a person’s name would be of type character
string. In the MOO programming language, you don’t have to declare in advance
what type of data a variable will hold, and a variable can hold different types of data
at different times. There is a way to ascertain what type of data a variable is holding
at any particular time, if one needs to know that.

When a verb is first invoked, certain variables are automatically created right
away, and are assigned values before anything else happens. These are called built-in
variables. The data these variables hold are always available for use within the body
of the verb itself. They include the object number of the player who typed the
command, the direct object (if any), the indirect object (if any), and a special variable
called args, which holds a list of any other pieces of information the verb or
subroutine needs to do its work – in other words, the arguments. For a command
line verb, the value of the variable args is a list of just those things the player typed –
the direct object, the preposition, and the indirect object, or the content of a paged
message, for example. Subroutines may need other pieces of information, however.
If a subroutine’s job is to take a list of numbers and sort them, for example, then it
needs to be told what numbers to sort, and that’s what would be in its args variable.

106 Programming

It is the job of the calling verb to send the right arguments to a subroutine so that the
subroutine can do its job correctly.

Processing Data – The Very Stuff

The basic things that verbs do are:

• Change (directly or indirectly) the values of properties on objects in the database.

• Send information to be displayed on someone’s screen (or several people’s
screens).

• Calculate intermediate results from given information and store them in
variables. (The “given information” is received by the verb in the built-in
variable args, which is sometimes also called the argument list.)

How is all this done? The server evaluates a sequence of expressions. An
expression is a combination of letters, numbers, punctuation marks and white space
which, when evaluated, generates a value. The value of an expression can then be
assigned to a variable, or stored in a property, or ignored. Why would a value be
ignored? Some expressions have side effects, which are actions that occur as a result of
evaluating the expression. An example of this would be displaying some text on a
player’s screen. If all you care about is an expression’s side effect(s), then you don’t
need to store or otherwise pay attention to its value, even though it has one.

The Finish

Calls to verbs are themselves expressions. When all the expressions within a
verb have been evaluated, then the verb is said to terminate. Any variables that the
verb used are removed from the computer’s memory, and a value, the final value of
the verb, is returned, either to the command line or to the verb that called it. If the
verb was called from the command line, its return value is ignored. If the verb was
called as a subroutine, then its return value may be ignored, or it may be used as a
component of a more complex expression.

In Conclusion

The substance of any programmer’s manual or programming language reference
is an enumeration of the kinds of expressions that are available, what each one does,
and (depending on how detailed the reference is) a synopsis of how to use them.
Looking at a programming reference can seem daunting, at first, but it isn’t an all-or-
nothing proposition. If you know a few simple kinds of expressions, then you can
write a few simple programs. If you know a wide variety of expressions, then you can
write a wide variety of programs, and everything in between. Virtuoso programmers
amass a knowledge of expressions and available subroutines the way master chefs

Programming 107

amass a knowledge of ingredients. Anyone who can read can cook, but the more you
know, the more you can do.

108 Programming

Yib’s Pet Rock: A Programming Tutorial for Beginners

Introduction

This tutorial was originally written on and for LambdaMOO. The overall
objective is to give you a footing in the MOO programming environment and a feel
for what the programming process is really like. I will take you through the steps of
creating and programming a few objects to a fair degree of sophistication. Without
the interaction afforded by a classroom setting (or a MOO!), it’s all but impossible to
avoid your doing at least some of the project by rote, but I hope you’ll gain an
intuitive sense of at least some of it as you go along. I go light on structured
presentations and explain things as and when we need them, and (I hope) just
enough so that you can get a handle on the concepts, but not so much that they
distract from the project at hand. The point is not to teach each and every nuance in
painstaking detail, but rather to give you some exposure to the kinds of things that
can be done and how to begin doing them.

The MOO Programming Reference section that begins on page 156 is a more
structured presentation, and those who prefer to begin with an overview should skip
ahead and come back to this chapter afterwards. Both styles of presentation work in
concert. A few things mentioned earlier in the book are repeated here, for review and
for the benefit of those who may have skipped ahead to this chapter.

I will explain how to inspect the code on an object (yours or someone else’s),
because this is one of the major methods of expanding one’s existing knowledge and
horizons. I will suggest a polite way to ask for help from more experienced players.

Nobody writes bug-free code, including this author. If you write your code
thinking that it will work perfectly the first (or second) time, you are setting yourself
up for disappointment. Debugging is an adventure; it’s detective work. If you find a
bug, celebrate! You’re that much closer to fixing it and moving on to the next one.

I hope to demonstrate what I consider to be good programming style, and to
point out ways to improve the inherent quality of your objects by making them
robust. It’s one thing to whip up a prototype that works, and quite another thing to
make a finely-crafted object that is easy for others to understand and use. Although
we will be making fairly simple objects, what you learn in their making will transfer
to making larger, more complex objects. Polishing is an important part of that
process.

Last, by showing you a variety of tools and how to use them, I hope to launch
you on a journey that is as much fun for you as mine has been for me.

Preamble and Prerequisites

If you don’t already have one, you will need a programmer bit. There are several
ways to get one, though in general you have to get one from a wizard. On some
MOOs, the process of getting a programmer bit is automated. One common way is to

Programming 109

give yourself a gender and description, then send mail to *wizards containing the
text, “May I please have a programmer bit?”

While this tutorial can be done without a copy of the Programmer’s Manual,
you’ll get much more out of it if you have one. The programmer’s manual is
ordinarily available by FTP from ftp.lambda.moo.mud.org. The file names are:

pub/MOO/ProgrammersManual.txt
pub/MOO/ProgrammersManual.ps.Z.

The .txt one is readable as plain text. The .ps one is for printing on a
PostScript® printer. The .Z means the file has been compressed (use uncompress to
decode it). (How to use FTP is beyond the scope of this book.)

You will need to know how to edit things on the MOO, which is addressed in
Chapter 4 – Using the Mail System and the Editors.

If you find this tutorial too laborious, and/or if you want to go on to do another
supervised project after those presented here, see also yduJ’s Wind-up Duck tutorial,
which is found in the Library on LambdaMOO.

Some Conventions

Typically, though not universally, commands that call attention to the fact that
we’re working on a computer begin with an “@” sign. @edit is one, @who is another.
Commands that are consistent with the Virtual Reality usually don’t begin with an
“@” sign, such as look or drop.

Angle brackets “< >” indicate a place-holder for an actual value that you must
supply at the time. For example, if I instruct you to type examine <object>, you
will type examine rock or examine tree or examine book depending on the
actual object of interest. If you are holding an object or if an object is in the same
room with you, then you can refer to the object by name. If you aren’t holding or
with an object, you can refer to it remotely by using its object number instead. One
way to find out an object’s number is to examine it. You can always get a list of
objects you own, and their numbers, by typing @audit me. You can also type
@audit <player> to see a list of objects that someone else owns.

It’s nice when objects have help text, and the ones we make will. But if an
object doesn’t have help text, the system will tell you to try examine <object>.
Some people prefer @examine <object> instead. What’s the difference? @examine
<object> will show you all the verbs associated with an object, whether they’re
meant for you or not. Some people prefer this completeness. Examine <object>
can be tailored by the object’s owner so that only relevant verbs appear, or so that all
the verbs appear in a more logical order, and it’s a more polished look. I will teach
you how to tailor what someone sees when e examines an object you have
programmed.

Asterisks in verb names: If you type examine $thing, you will see:

110 Programming

generic thing (aka #5 and generic thing)
Owned by Haakon.
(No description set.)
Obvious verbs:
g*et/t*ake $thing
d*rop/th*row $thing
gi*ve/ha*nd $thing to <anything>

The asterisks indicate ways in which you can abbreviate a verb when typing it.
So get $thing and g $thing do the same thing. In a room, you can type look or
l to the same effect. You may put asterisks in your verb names or leave them out.
Does it matter? Sometimes. If you’re going to embellish an existing verb, then you
have to type in the verb name as given. More on this later.

A quick note about formatting. The MOO programming language will let you
separate its different elements with any combination of spaces, tabs, and line breaks
except that a quoted string, such as "You have to be holding that to use
it," may not have a line break in it. (Any line breaks within quoted strings in this
tutorial are artifacts of typography.) When typing in commands or lines of MOO
code, type in quoted strings as one long line, even if they are longer than a physical
line on your screen.

Let’s Go!

Well! Let’s stop beating around the bush, and make something already! We’re
going to make a pet rock. Pet rocks don’t do much, but it’s good to start small.
Think of it as a stepping stone to bigger and better things. Type in the following (as
one long line):

@create $thing named "<your name>'s pet rock","pet
rock","rock","pr"

Whew. Let’s look at that. @create is the command for making a new object
What about that “$” sign in $thing? Some objects are so basic to the system that
they have sort-of universal names, and we never have to remember their object
numbers.18

When you created the rock, you gave it a list of names, in double quotes,
separated by commas. The first one is its actual name. The others are aliases, and
you can use any of them to refer to your rock if you are holding it or in the same
room with it. If you want to change or adjust the name or aliases, see help
@rename, help @addalias and/or help @rmalias. See also help @create for all
the low-down nitty-gritty on creating things. If you wanted to, you could give it only
a name, and no aliases, or you could name it Malcolm, or Fred, or whatever you like.

18 Where do they come from? They’re designated by wizards on object #0. If you were to look at

#0.thing you would see #5 (generic thing). So $thing means #0.thing, and $note means #0.note, and
so on.

mailto:@addalias
mailto:@rmalias
mailto:@create

Programming 111

Programming is about making choices, and it’s the choices you make that make your
programming yours.

You also don’t have to put quotation marks around the aliases. (I do it out of
habit – the two are equivalent.) Speaking of quotation marks, if you want to include
the quotation mark character in a string, precede it with the backslash character “\”.
Names and aliases can’t contain commas.

Well, at the moment, our rock doesn’t look like much. Let’s give it a description.
I did mine this way:

@describe rock as "A small rock. It looks friendly, but
doesn't do much."

Okay, let’s cut to the chase! Time to put a verb on that rock:

@verb rock:pet this none none rxd

The @verb command is how we add commands to objects. Some are “obvious
verbs” that show up in examine, and others aren’t. If you examine your rock now,
you won’t see the verb you just added. And if you type pet rock, the system will
respond with I don't understand that. (Try it yourself, just to be sure.) That’s
because we haven’t programmed the verb, yet. But hang on, here we go.

There are two ways to accomplish this. One is to type in the verb all at one go,
as follows:

@program rock:pet
player:tell("You pet the rock. Nothing happens.");
.

Notice the period on a line by itself at the end. That’s an essential part.

The other way to program the verb is to use the verb editor, like this:

@edit rock:pet
enter
player:tell("You pet the rock. Nothing happens.");
.
compile
done

You should type in each line exactly as given. The semicolons at the end of
some lines are part of the program, for example, and the word enter is an editor
command.

If you get a compiler error message, don’t panic. You probably made a typing
mistake. See which line it had trouble with (there aren’t a lot of choices, with this
verb, but there will be, later), and check for a missing semi-colon, mismatched quote-
marks, a period instead of a colon, etc. How do you check? With compiler errors,
you have to do it by using verb editor as shown in the second example above. Type
in your verb. Type compile. When you get the compiler error, type list or list
1-$ to see the lines listed with their associated numbers. Lines are delimited by
semicolons; if you leave one out, the compiler may report the problem as being on
the prior or subsequent line than the one the error is actually on. So for an error on a

112 Programming

given line, also check the lines before and after the one that the compiler claims is
problematic.

Now we’re rolling! Examine the rock. Pet the rock. Celebrate!

Got a traceback? Don’t panic. Read it, see which line is problematic, then check
that line and any lines near it. Tracebacks are good (in an intermediate sort of way).
They help us find and fix bugs faster.

To fix a program (or change it), you can either type in the corrected version from
scratch (@program rock:pet) or use the verb editor (@edit rock:pet). Note that
once you have created a particular verb with the @verb command, don’t use @verb
to add it again. That’s a once-only operation. Just change it with @program or
@edit.

But What Did I Just Do?

Before we move on, I want to explain a bit more each of the lines I just had you
type in.

@verb rock:pet this none none rxd
@Verb tells the system to add a verb to an object. Let’s look at rock:pet.

“Rock” identifies the object. “:” signifies a verb, as opposed to a property. “Pet” is
the name of the verb. The words “this none none” are the argument specifiers for
the verb, and express in a formal way how the command will be typed in by the user.
In this case, we want the command to be pet rock with no preposition or indirect
object. “rxd” means that it’s readable by others (r), callable by other verbs (x) (think
“eXecutable”), and will generate a nice, informative traceback (d) (think “debug”) if
something goes wrong.

player:tell("Nothing happens.");
Player is a built-in variable that always refers to the player who typed in the

command. :tell is one way to cause text to be displayed on someone’s screen. The
parentheses surround what we’re going to tell that player. In this case, we’ve typed in
a string, delimited by double quotes, that the player will see. Strings delimited with
quotes, object numbers, and some arithmetic numbers are called literals (as opposed
to variables). It is bad programming hygiene to put literals in your verbs (with a few
exceptions), and we’ll be cleaning that literal out and replacing it with something
better shortly.

In fact, let’s do that now. Instead of embedding the text in the verb (bad), we’ll
extract it into a property (good). And this is going to be a special kind of property
called a message. Type this:

@property rock.pet_msg "Nothing happens." rc

Notice the period instead of the colon between the word “rock” and the string
“pet_msg”. This, along with the fact that we’re using the @property command tells
the system that we’re adding a property and not a verb. "Nothing happens." is the

Programming 113

initial value of our property. We can change it later if we want to. “r” means that the
property is r eadable. In general, specify “c” when you expect to c hange this property
from the command line, and not from within a verb. Leave the “c” out if you do
intend to change the property from within a verb. (A detailed discussion of what the
“c” flag means and how to use it begins on page 165.)

Now, edit the verb to use this message. Either @edit rock:pet to use the verb
editor, or @program rock:pet as follows:

@program rock:pet
player:tell(this.pet_msg);
.

Notice that instead of a string in quotation marks, we’ve put in a property name
instead. “this” refers to the object on which the verb is defined, in this case, your
rock. “.pet_msg” refers to the property we just created.

Now pet the rock:

pet rock
Nothing happens.

Hmm. Something’s missing. Right! I forgot to put in “You pet the rock,” first.
Well, it’s easier to change a property, especially a message property, than to re-edit
the verb, and that’s one of the reasons why we put messages in properties. Observe:

@set rock.pet_msg to "You pet the rock. Nothing happens."

or:

@pet rock is "You pet the rock. Nothing happens."

The second form works because the property’s name ends in _msg.
Now pet the rock again. Voilà! See how easy this is? If you wanted to you could

try:

@pet rock is You pet the rock. Nothing happens. What
foolishness!

Sharing the Experience

Now let’s go public, so to speak, and make our petting action visible to others.

The business of programming has many phases. Among them I number
deciding what you want the object to do, thinking up various ways one might do it,
seeing if it can be done at all (prototyping), finding a better way to do it. The last one
tends to be repeated, and deciding when one has gone far enough is part of what
makes it an art.

So. What do I want it to do? I want it to announce to other players in the room
that I’m petting the rock.

114 Programming

What are some ways that I might do it? New programmers may not have a clue
where to begin. Experienced programmers may have a sense of “the usual way to do
it”, if it’s a commonly-done thing, or will investigate how other people have done it,
if it’s a thing they’ve seen before. Geniuses may come up with a brilliant, new way to
do it that may or may not be practical. For now, follow my lead. Later, I’ll show you
some ways to see how other people do things. Good programmers stand on the
shoulders of giants (giving credit where credit is due, of course).

We’ll do a prototype, first, to demonstrate that it can be done at all, then I’ll
show you some better ways to do it. Here we go:

@program rock:pet
player:tell(this.pet_msg);
player.location:announce(player.name +
 " pets the rock. Nothing happens.");
.

Player.location is the room where the player is located.
Player.location:announce(<text>) is a verb defined on all rooms, and it
announces text to everybody in the room except player, the person who typed in
the command. The parentheses contain the arguments to
player.location:announce. Arguments are the incoming information a verb
works with. Player.name is the .name property of the person typing in the
command. Text in double quotation marks is plain text, also called a literal. The “+”
sign joins, or concatenates, two strings of text to each another.

Now to test it. An interesting challenge, here, because you see the regular stuff,
but want to know what other people see. You will either need to get a partner, or, if
you have the capacity to MOO with two windows at once, log in as a guest, join
yourself, and do two things at once. If you work with a partner, I recommend both of
the following: Pet the rock, and ask your partner what e sees. Ask your partner to pet
the rock and see for yourself.

Okay, that’s the prototype. It works, but leaves much to be desired. The first
step in improving the situation would be to extract the text into a second message.
But wait! The message changes depending on who is petting the rock, so we can only
put the fixed part of the message into the property:

@property rock.opet_msg " pets the rock. Nothing happens."
rc

This is the part of the message which won’t change.

It is a programming convention on the MOO to make messages in pairs, one for
the player doing the action and one for everybody else, and, by convention, the
message have the same name except that the one for everybody else is prefixed with
an “o”, for “others”. To use the message:

@program rock:pet
player:tell(this.pet_msg);
player.location:announce(player.name + this.opet_msg);
.

Programming 115

Test it. It works, but is only a modest improvement. Modest improvements are
progress, though. (If it doesn’t work, debug it until it does. Probably a typographical
error – we all make them.)

Just as we extracted message text into a property, before, now we’re going to
extract the business of constructing a message into a separate verb of its own. This
may seem like a lot of work for one little message, but the fact is that complex objects
have many messages, and we’ll be able to generalize our work. So think of it as an
investment of effort that will pay off later. (And it will, I promise.)

@verb rock:opet_msg this none this rxd

@program rock:opet_msg
return player.name + this.opet_msg;
.

@program rock:pet
player:tell(this.pet_msg);
player.location:announce(this:opet_msg());
.

Be sure to test your work.

What’s new, here? What’s new is that we have just created a verb with the same
name as a property. This is fine, and in fact desirable, as I will demonstrate later. For
now, just remember to pay close attention to the difference between “.” and “:”.

Also, the new verb had argument specifiers of this none this. Because there
is no natural English language construct in which a thing is both the direct and
indirect object of a verb with no preposition in between, we use this combination of
argument specifiers to designate an internal verb (called a subroutine) as opposed to a
command-line verb. If you examine your rock again, you will note the absence of
opet_msg from the list of obvious verbs, which is the way we want it. The new verb
returns a result, which in turn is used by the verb that called it.

Plunging Into Pronoun Substitutions!

The time has come to learn to put pronouns into your messages.

At your leisure, you should skim help pronouns and help
$string_utils:pronoun_sub. You don’t have to understand every nuance now,
but you should know that these help texts exist, and you should have a sense of their
scope, for future reference. (I still refer to them from time to time, myself.)

Suppose that when I pet the rock, you wanted the system to announce, “Yib pets
the rock. Nothing happens. Doesn’t she look foolish!” And when Klaatu pets the
rock, we would want it to say, “Klaatu pets the rock. Nothing happens. Doesn’t he
look foolish!” and when Bits (who use the plural gender) pet the rock, we’d like it to
say, “Bits pet the rock. Nothing happens. Don’t they look foolish!” (I hope you’re
beginning to detect a pattern, here.)

116 Programming

Here we go.

The tool that does the work for us is called $string_utils:pronoun_sub. It
takes a string as an argument, and replaces certain special symbols with values that
are meaningful at the time the verb is called. We’ll do this in steps. Type:

@set rock.opet_msg to "%N pets the rock. Nothing happens."

or:

@opet rock is %N pets the rock. Nothing happens.

or:

@opet rock is "%N pets the rock. Nothing happens."

Because the property name ends in “_msg” we can set it using any of these
forms. (From now on I’m going to let that go without saying.) %N is the special
symbol for which the player’s name will be substituted. (In the “Learn Something
New Every Day Department”, after all these years of programming, I just noticed that
that omitting the double quotes in the second form reduces the number of spaces
between the two sentences from two to one, while using the double quotes preserves
the two spaces between the two sentences. Fancy that! Since I’m picky about
spacing, I’ll use double quotes, as I always have (until I started writing this tutorial).)

Now we’ll revise the :opet_msg verb:

@program rock:opet_msg
return $string_utils:pronoun_sub(this.opet_msg);
.

Now that the code is in place, lets fancy up that opet_msg a bit more:

@opet rock is "%N pets the rock. Nothing happens. Doesn't
%s look foolish?"

%s is the special symbol that substitutes the subject pronoun (he, she, e, they,
etc.) Capitalization of the substitution symbols works as you might expect, by the
way. Find a way to test this new message with different genders. Either find people
of different genders to play with, or find an observer while you set your own gender
to different things. Or, if your machine and/or client software has the capability, you
can log on simultaneously as yourself and a guest for purposes of testing. Many
programmers do this.

Did you find the problem with the plural gender? “Bits pets the rock. Doesn’t
they look foolish?” Who looks foolish now? The pronouns are good, but there’s a
little problem with verb agreement. Never fear, $string_utils:pronoun_sub will
save the day again:

@opet rock is "%N %<pets> the rock. %<Doesn't> %s look
foolish?"

Now this works for everybody and everything. (Ain’t life grand?) The percent
sign in combination with the angle brackets signals to
$string_utils:pronoun_sub that some adjustment may be needed for verb
agreement. From your end, just put the appropriate (English language) verbs between

Programming 117

the angle brackets, preceded by the “%” sign. Write them as if they were for a third
person singular actor.

Generalizing the Message Verb

What we’ve done so far is work our way up to the .opet_msg property and a
corresponding :opet_msg verb that does spiffy pronoun substitutions, and we’ve
come quite a long way from where we started out. And we could do another verb, if
we wanted, :feed, perhaps, with corresponding .feed_msg and .ofeed_msg
properties and an :ofeed_msg verb. (Think about how you might do that.) The
:ofeed_msg verb would look an awful lot like the :opet_msg verb, wouldn’t it? In
fact, it would bear a STRIKING RESEMBLANCE, except for the name of the message
property it referred to. Well, well. Can we capitalize on this and do something more
efficient? You bet we can:

@program rock:opet_msg
return $string_utils:pronoun_sub(this.(verb));
.

Instead of this.opet_msg, I wrote, this.(verb). Notice that the name of the
verb is the same as the message. The variable verb is a system-provided or built-in
variable that contains a string, the name of the verb as it was called. Now do this:

@addalias "pet_msg" to rock:opet_msg

Just as objects can have aliases, so, too, can verbs. But the important part is that
when the verb gets executed, the message on which pronoun substitution is
performed and which is ultimately displayed is either this.pet_msg or
this.opet_msg, depending on which alias was used to call verb.

And then:

@program rock:pet
player:tell(this:pet_msg());
player.location:announce(this:opet_msg());
.

Ta-dah! We’ve now generalized it about as much as we can. Watch closely.
Nothing up my sleeve, and presto!

@addalias "feed_msg" to rock:pet_msg
@addalias "ofeed_msg" to rock:pet_msg

@prop rock.feed_msg "You try to feed the rock. Nothing
happens." rc

@prop rock.ofeed_msg "%N %<tries> to feed the rock. Nothing
happens. Natch!" rc

@verb rock:feed this none none rxd

118 Programming

@program rock:feed
player:tell(this:feed_msg());
player.location:announce(this:ofeed_msg());
.

examine rock
pet rock
feed rock

Heh.

Polishing the Rock

I am now going to address myself to issues of documentation. At the beginning,
writing documentation may seem tedious, and it may seem silly to add comments to
such simple programs. But comments and documentation are among the things that
separate the good craftsman from the mere hack; adding them consistently is a very
good habit to get into.

We’ll start with plain help text, which turns out to be easier than you might
think. Just create and edit a .help_msg property. (It can have one line or a list of
several lines.) I usually start out with an empty list, then edit that with the note
editor:

@property rock.help_msg {} rc

@edit rock.help_msg
enter
Rocks make great pets! They're quiet, clean, and easy to
maintain.

Build one today!
.
save
done

If you wanted to, you could @addalias "help_msg" to rock:pet_msg and
do pronoun substitutions in the help messages. Let’s do that, just to see:

@addalias "help_msg" to rock:pet_msg

@edit rock.help_msg
list
ins 2
enter

This one's name is %t.

Programming 119

.
save
done

help rock

Recall that I asked you to read help $string_utils:pronoun_sub.
$string_utils is an object, and has its own .help_msg property. And there is also
help text for the verb, :pronoun_sub. How do they do that? If you typed @list
$string_utils:pronoun_sub (it’s rather long), you would see some lines at the top
in double quotes, with semicolons at the end. You would probably recognize these as
comments, and you would be right. Comments that appear at the top of a verb
(before any other lines of code) will also appear as help text for that particular verb.
Even though our verbs are small and simple, let’s add comments to them:

@edit rock:pet
ins 1
enter
"Usage: pet <this>";
.
compile
done

help rock:pet

Do the same for the :feed verb. At the top of the :pet_msg verb, put a
comment that says, “This verb does pronoun substitutions on various messages.”
Test your work.

And now, for the icing on the cake, because we can, we’re going to customize the
output when someone types examine rock:

@prop rock.obvious_verbs {} rc

@edit rock.obvious_verbs
enter
 pet %<what>
 feed %<what>
 give/hand %<what> to <anyone>
 get/take %<what>
 drop/throw %<what>
 help %<what>
 .
save
done

@verb rock:examine_verbs tnt rxd

@program rock:examine_verbs

120 Programming

"Returns a list of obvious verbs, substituting the string
the player typed in for %<what>";
what = dobjstr;
vrbs = {};
for vrb in (this.obvious_verbs)
 vrbs = {@vrbs, $string_utils:substitute(vrb,
 {{"%<what>", what}})};
endfor
return {"Obvious verbs:", @vrbs};
.

examine rock
examine pet rock

The .obvious_verbs property should seem fairly obvious to you by now. Let’s
take a quick look at that :examine_verbs verb. It’s an internal verb that’s called
when you examine something. It has a comment at the top. dobjstr (think “direct
object string”) is the string the user typed as the direct object in a command. If the
player typed examine rock then dobjstr will be “rock”. If the player typed
examine pet rock, then dobjstr will be “pet rock” and so on. The next few lines
are building a construct to return as a result. We start with an empty list. Then there
is a for loop that does something with every item of .obvious_verbs. What does it
do? It does a substitution of dobjstr, and appends the new result to the existing
list. For the use of the @ sign in this context, I refer you to help listappend. For
the rest, parentheses, brackets, and braces nest. It’s just a fancy call to a fancy verb,
$string_utils:substitute, which has its own help text. If you want to, you can
take this one at face value, and model subsequent :examine_verbs on other objects
after this one. Mimicking is a tried and true technique that gets you into hot water
sometimes but often works. I’m not above doing it myself when I’m trying to learn
how to do something: Mimic something similar, and in the process of getting it to
do exactly what I want, I learn how it actually works. Last, notice the return
statement: Because of the curly braces {}, it’s returning a list of things, which the
calling verb is expecting.

Programming can be wild and woolly, sometimes, but that’s part of the fun.

What Can’t You Do With a Rock?

Well, you can throw a rock. Throwing rocks isn’t very nice. You can, if you
wish, prevent people from throwing your rock.

In this case, it’s less about programming (more of that later), and more about
controlling your environment and the things you own, so let’s learn to exercise a bit
more of that control.

In MOOs, throwing and dropping are more or less considered synonymous. But
it doesn’t have to stay that way. Examine rock. You will see, among other obvious

mailto:@vrbs};

Programming 121

verbs, d*rop/th*row rock. Initial concept: We want dropping the rock to behave
normally, but throwing the rock to give the player a message, instead.

Type @messages rock. You will see all the _msg properties defined on your
rock (and all of its object ancestors), including the messages that we added. Notice:
No throwing messages. Concept: Make a separate throw verb, and a set of throw
messages to go with it. Revision: Actually, they should be no_throw messages, or
perhaps, to blend in with what’s already there, throw_failed messages. So:

@prop rock.throw_failed_msg "Throwing rocks isn't nice, and
besides, this rock likes you, so it stays nestled safely in
your hand." rc

@prop rock.othrow_failed_msg "%N %<makes> a throwing motion
with %t, but can't quite seem to bring %r to let go." rc

@addalias "throw_failed_msg" to rock:pet_msg
@addalias "othrow_failed_msg" to rock:pet_msg

So far this should seem familiar. I often start with what I want the messages to
be, then verbs to control how, when, and to whom they’ll be displayed:

@verb rock:throw this none none rxd

But wait! The verb name is “th*row”, and if we want to override it, we have to
name it exactly the same as the verb on its parent. If you went ahead and typed in
the line above, remove the verb with:

@rmverb rock:throw

To be absolutely sure of how to add it, we’ll check with this:

@display rock:throw

We use @display rock:throw rather than examine rock because who knows
how the previous programmer may have gussied up the examine verbs, eh? Based on
what we see, then, we’ll add the verb like this:

@verb rock:th*row this none none rxd

@program rock:throw
"Throwing stones isn't nice. Thwart that impulse.";
player:tell(this:throw_failed_msg());
player.location:announce(this:othrow_failed_msg());
.

Well, on looking at it, that throw_failed_msg is a bit patronizing, and
furthermore, unhelpful to someone who actually wants to rid emself of your rock. So
let’s adjust it:

@throw_failed rock is "Throwing rocks isn't nice. Try
dropping it, instead."

Test everything. Try throwing the rock. Try dropping the rock. Examine the
rock. Hmm. I found, in my play-testing, that you can’t drop a rock if you aren’t

122 Programming

holding it, but you can throw a rock (or try) if you aren’t holding it. We can do
better. Let’s start by looking at what the original code does:

@list rock:drop

This will show us the original drop verb. It’s pretty old code, and written in an
older style. You’ll notice the difference between the way that verb handles messages
and the way ours do. Our verbs are new and improved. And you’ll see some things
that you don’t understand, perhaps, which may or may not turn out to be relevant.
Get what you can out of it and don’t worry about the rest, right now. What we’re
looking for, though, is the part that generates the text, “You don’t have that,” so that
we can do ours in a similar, if not identical way. And what it does is check the
location of the rock, and display different messages depending on where it is. Our
verb will be simpler, but will behave in a similar way. I’m going to show you two
versions, and I hope you can tell by inspection (and maybe by consulting the
programmer’s manual) what the difference is. They are both equally good, so you
can choose which way you want to implement it.

Version 1:

@program rock:throw
"Throwing stones isn't nice. Thwart that impulse.";
if (this.location == player)
 player:tell(this:throw_failed_msg());
 player.location:announce(this:othrow_failed_msg());
else
 "You can't throw a rock if you don't have it in the first
place.";
 player:tell("You don't have that.");
endif
.

Version 2:

@program rock:throw
"Throwing stones isn't nice. Thwart that impulse.";
if (this.location != player)
 "You can't throw a rock if you don't have it in the first
place.";
 player:tell("You don't have that.");
else
 "You have it, but you can't throw it....";
 player:tell(this:throw_failed_msg());
 player.location:announce(this:othrow_failed_msg());
endif
.

Here is a case where I’ve chosen not to extract a message into a property, so let
me tell you why. I put in a perhaps-superfluous comment, “You can’t throw a rock if
you don’t have it in the first place,” mostly to set a good example. But in a case
where we’re just telling the player some sort of error message, the embedded string

Programming 123

can serve as the comment. So a leaner but just-as-readable version might look like
this.

Version 3:

@program rock:throw
"Throwing stones isn't nice. Thwart that impulse.";
if (this.location != player)
 player:tell("You don't have that.");
else
 "You have it, but you can't throw it....";
 player:tell(this:throw_failed_msg());
 player.location:announce(this:othrow_failed_msg());
endif
.

Expediency is fine, if it isn’t cryptic. If you have to squint to follow what the
code is doing, add a comment. You’ll be glad later that you did. Trust me.

Before we move on, I want to take a quick moment to point something out in
Version 1. Notice the line, if (this.location == player). Notice especially the
double-equals sign “==”. There is a very big difference between a single equals sign
and a double equals sign. The first is an assignment statement. a = b means, “Set
the variable a equal to the current value of the variable b.” a == b means, “Is the
current value of a equal to the current value of b?” These are two very different
things. Confusing the two is a classic mistake. Heads up.

Here’s another way to control your rock and what people do with it.

Suppose you want to lock your rock in place, so that people can’t take it. Maybe
it’s a boulder!

drop rock
@lock rock with here
take rock

Heh, you can’t pick that up, and neither can anybody else. You might change
your rock’s description to show that it’s a boulder. Or you might just change
.take_failed_msg and otake_failed_msg to say something like, “It’s heavier than it
looks, isn’t it!”

If you decided to make your rock portable again, type:

@unlock rock

See also help @lock and help locking.

Rockin’ and Rollin’

So far, we’ve done a variety of things with our rock, but the rock itself hasn’t
changed, much. Hardly surprising, I suppose, but the phrase comes to mind, “A

mailto:@lock

124 Programming

rolling stone gathers no moss,” and I was thinking, wouldn’t it be fun if our rock
gathered moss?

How shall we start thinking about this? Well, what if the description had a bit
tacked onto the end saying how mossy the rock is? The amount of moss can depend
on how long since the rock was last moved.

So. We’ll need a list of different amounts of moss. We’ll need to write a verb to
make the description change over time. We’ll need a way to see how long it has been
since the rock was last moved, and we’ll need a way to convert that amount of time
into a phrase about moss.

Let’s start with the easy part to get our juices going:

@property rock.moss_list {} rc

It’s going to be a list of text strings, and {} is the symbol for the empty list. We
start with that. Then:

@edit rock.moss_list
enter
It has gathered no moss.
If you were to look at it closely with a magnifying glass,
you would see a tiny bit of moss on it.
There is just a wee bit of moss growing on it.
It has gathered a little bit of moss.
There is some moss growing on it.
It is about half-covered with moss.
It has gathered quite a bit of moss.
It has gathered a great deal of moss.
It is almost completely covered with moss.
It is covered with moss.
.
save
done

Time on MOOs is measured in seconds since midnight on 1 January 1970,
Greenwich Mean Time. How do I remember that? I don’t. It’s in help time(),
which we will be using.

@prop rock.last_moved_time 0 r

It’s r (and not rc) because we’ll be changing it from within our verb (only).
Every time the rock moves, we’ll record the time. Every time someone looks at the
rock, we’ll compare the current time to the .last_moved_time. Any time an item
moves or is moved, its :moveto verb is called. We want to take advantage of this by
adding a bit to the existing :moveto verb, and we do it like this:

@verb rock:moveto tnt rxd

tnt is an abbreviation for this none this, our designation for an internal verb.

@program rock:moveto
"Reset the reference time (clearing off any moss)";

Programming 125

this.last_moved_time = time();
"Then do all the usual stuff that the parent does.";
return pass(@args);
.

Can we test out this much? You bet. Drop the rock (if you have it) or take the
rock (if you don’t). You can manually inspect the .last_moved_time property this
way:

#rock.last_moved_time

(See also help #.) Move it again, then check .last_moved_time again. It changed,
by about the number of seconds between moves. Don’t be daunted by that great big
number. There are plenty of verbs to help us make sense of it. (See help
$time_utils if you’re curious right now.)

We don’t care what the number means. It’s the difference between time() and
rock.last_moved_time – the number of seconds that have elapsed since it was last
moved – that interests us. Next we have to pick an interval (measured in seconds)
during which a new amount of moss grows. Maybe a day, or a week, but who wants
to wait that long to test it? We’ll start with, say, a minute, then change the number
later after we’ve tested it:

@prop rock.moss_interval 60 rc

The next bit is rather a lot of complexity all at once, but try to stay with me,
here.

First, let’s look at some of those moss descriptions one at a time, to get a feel for
them. You’ll need to know your rock’s object number for this. If you’ve forgotten it,
type #rock. Mine is #70217, so I’ll type that here, but you should use your own
rock’s object number. (Angle brackets are just too cumbersome for this
demonstration.) We’re going to play with eval a bit. eval lets you evaluate a tiny
bit of MOO-code on the fly, as it were, without having to write an entire verb to do it.
and ; are abbreviations for eval. It’s extremely useful! Try some of these:

#70217.moss_list
#70217.moss_list[1]
#70217.moss_list[5]
#70217.moss_list[0]
#70217.moss_list[30]

Oho, if we give it too high or too low a number, we get an error. We’ll want to
keep this in mind when we write our verb. Here are some more examples of eval:

;length(#70217.moss_list)
;#70217.moss_list[length(#70217.moss_list)]
;#70217.moss_list[$]

;ctime()
;ctime(#70217.last_moved_time)
;time() - #70217.last_moved_time

mailto:@args

126 Programming

;(time() - #70217.last_moved_time) /
 #70217.moss_interval

If your moss interval is 60, like mine, the last one will show you how many
minutes since the rock was last moved.

Now we’re going to add a :description verb to the rock, which we will then
customize. When you look at a thing, the system executes that thing’s
:description verb. For most things, all the verb does is return the value of the
.description property, very like our message verbs were doing before we got fancy
with pronoun substitutions. It’s not unusual for objects to have customized
:description verbs:

@verb rock:description tnt rxd

@program rock:description
"Start with the original description, then add to it.";
"Some moss, perhaps.";
base_description = pass(@args);
"What time is it now?";
now = time();
"How long has it been since it was last moved?";
how_long = now - this.last_moved_time;
"How many .moss_intervals is that?";
index = how_long / this.moss_interval;
"If it has been a very short time, index will be 0, but list
elements always start at 1 in MOO code, so we'll add 1.";
index = index + 1;
if (index > length(this.moss_list))
 "It has been so long, index is too high.";
 "So just use the last one.";
 index = length(this.moss_list);
endif
return (base_description + " " +
 this.moss_list[index]);
.

Test your work. Isn’t this fun? If you don’t like waiting an entire minute each
time, set your rock’s .moss_interval to something smaller, like 10 or 15. Then
when you’re satisfied, set it to something longer. How many seconds in a day? In a
week? In a month? Find out like this:

"One hour
;60 * 60
"A day
;60 * 60 * 24
"A week
;60 * 60 * 24 * 7
"And so on.

mailto:@args

Programming 127

And now, a stationary stone gathers moss.

Looking Under Various (Other) Rocks

Learning a new language is always a challenge, and a programming language is
no different. It’s nice, as an adult, to attend a language class and have a professor or
instructor take you through the material in a logical sequence, so that first you learn
to express simple things, then more complex things, until you get a sufficient
understanding of the grammar and a sufficiently large vocabulary that you can start
to express your own ideas independently. Children learn languages, on the other
hand, by being immersed, by imitating those around them, by trying things and
seeing which utterances get results and which get perplexed looks from their elders. I
don’t think anyone learns a language by reading a dictionary.

The Programmer’s Manual is a good reference book, but there are other tools that
will help you explore the MOO around you and learn (by example) from what’s out
there already. I am going to detail some of those tools now.

Suppose you want to investigate an object to find out what makes it tick. First, (I
hope) you would examine the object and perhaps play with it a bit.

Then you might type help <object>, to see what the owner or creator wants
you to know about it. Then, perhaps, @parents <object> to get a handle on what
sort of object it is. You’ll get a list of object numbers and names, and it may (or may
not) be fruitful to check the help text on the object’s ancestors, as well.

Then, perhaps, you’d like to know whether this object has any special
programming of its own that makes it different from its ancestors. This is where the
@display verb comes in. It’s one of my favorites. There’s extensive help text on it,
but the form of @display that I use most often is @display <object>.: which
gives a list of verbs and properties defined on that object. (Note that if none are
defined, however, you may see the verbs and properties defined on its immediate
parent, instead. You can fix that by typing @display-options +thisonly.) Often
you can get a good start on understanding an object just by looking at the names of
the verbs and properties defined on it. Trick: If an object is set as a whole to be
unreadable, but some or all of its verbs are readable, you can get a handle on those by
typing @verbs <object> instead of using @display. (See also @show <object>.)

If a particular verb catches my eye, I might list it, using the command @list
<object>:<verbname>, just to see what’s in there.

Another thing I might do is type @messages <object> to get a sense of the
scope of its output. If there are messages that I haven’t found yet in the course of my
playing, then I know that the programming on the object is richer than first meets
the eye, and that it might well be worth exploring the object further.

Some people like to use either @dump <object> or @dump <object> with
create to get a complete listing of everything on it. As a rule, I don’t care for the
large quantity of text that @dump generates, but some people like to print out

128 Programming

everything there is to know about an object, send it to a printing device, and read the
hard copy at leisure. If that’s your cup of tea, by all means do that.

Suppose you see a line of text, that you know to be from a particular object, and
you want to home in on it to see what verb generates it, and what’s going on in the
vicinity (if you will) of the line of text that has caught your interest. For example,
“Yib tries to feed the rock. Nothing happens. Natch!” The @grep command can be
helpful here. (Note, @grep requires an object number, not the name of an object,
even if you are in proximity.)

@grep "Natch!" in <object>

Searching for verbs in <object> containing the string
"Natch!" ...

Total: 0 verbs.

Well, in this case we struck out. But if you typed @messages rock and found
that the phrase, “Natch!” was part of the .ofeed_msg property, then you could type:

@grep "ofeed_msg" in <object>

and you would see:

Searching for verbs in #<object> containing the string
"ofeed_msg" ...

<object>:feed [<verb owner>]:
player.location:announce(this:ofeed_msg());

Total: 1 verbs.

So in this case you would have learned that ofeed_msg (which contains the
string we’re interested in) is used in the :feed verb, so then you might list that verb
out to see the larger context.

Last, suppose you are MOOing along, minding your own business (more or less),
and out of the blue you see the text, “A black magpie flies in and looks greedily at
bright sparkly thing.” (You happen to have dropped said sparkly thing recently.)
Suppose you made that sparkly thing yourself, and know for sure that there is
nothing in its verbs or properties that refers to a black magpie. Where did this line of
text come from? What’s going on here? You can type @check-full <text> and
get a trace of the verbs that were called in the process of delivering this choice tidbit
of text to your baby blue eyes:

Programming 129

@check-full magpie

Traceback for:
A black magpie flies in and looks greedily at bright sparkly thing.
This Verb Permissions VerbLocation Player
-------------- ------------------ -------------- -------------- ------------
#58337(Y) tell(1) #67(Rincewind) #7069(generic) #5720(blue)
#58337(Y) tell(29) #3920(Jay) #33337(PC Clas #5720(blue)
#58337(Y) tell(4) #57140(SSO) #40099(SSSPC) #5720(blue)
#58337(Y) tell(1) #58337(Y) #58337(Y) #5720(blue)
#6193(Driveway announce_all(3) #2(wiz) #3(generic roo #5720(blue)
#6193(Driveway announce_all(3) #24442(rw3) #17755(Integra #5720(blue)
#77522(magpie) make_the_rounds(27 #61050(Y_A) #77522(magpie) #5720(blue)
#77522(magpie) wake_up(19) #61050(Y_A) #77522(magpie) #5720(blue)
-------------- ------------------ -------------- -------------- ------------

Well, in this example, you can find out the object number of the magpie, the
names of a couple of verbs on the magpie that might be worth looking into, and then
you’re off and running. Heads up: If you are doing this on LambdaMOO and have
the Lag Reduction FO of Godlike Powers, you will have to type @addlag and
@paranoid <number> in order to get anything useful from @check-full.
<number> in the @paranoid command refers to a number of lines to keep tracebacks
for. There is help text for all of these functions.

Read lots and lots of verbs. Even if you don’t understand everything in them,
you will gain exposure, start to pick up on patterns, and, as you are ready, absorb new
concepts and learn new tricks. Leave no stone unturned.

Asking Others for Help

It is very important that you give a problem the old college try before asking
others for help, for a couple of reasons.

First, it’s inconsiderate to ask someone else to put more time and work into
investigating a bug of yours than you are willing to do yourself.

Second, the very act of trying everything you can think of and checking every
reference you know about makes you more receptive to and able to understand the
answer when you finally get it.

Before asking for help:

• Read any tracebacks and look at the verb/lines that seem to be causing a problem.

• Read any compiler errors and look at the verb/lines that seem to be causing a
problem.

• See if you can find any online help text that addresses your difficulties. (Don’t
forget help index.)

• See if there is any other documentation relevant to your project.

When you ask for help, put together a summary of the problem:

130 Programming

• Include a brief description, and a copy of a traceback (if any).

• Describe in detail how to duplicate the problem.

• Include object numbers -- don’t just say, “My pet rock doesn’t work.”

• Indicate what you’ve tried so far, both to show that you have tried, and to save
your helper the trouble of trying things that you’ve already checked.

DO ask for help if you’re genuinely stuck. Most people are happy to assist (or at
least try) if you ask nicely and demonstrate respect for their time.

Is It Covered With Moss, Yet? (A Small Side Project)

While my rock was gathering moss, I was wanting to check it each and every
.moss_interval, just for the fun of reading all the messages. But I felt silly typing
look rock over and over again, waiting to see whether it had changed yet. So I
thought, “I wish I had a timer, so I could set it and forget it, and be reminded when it
was time to look at the rock again.”

Let’s make one.

Concept: This will not be a complicated object to use. All we need is a verb, set
timer for <some duration>. One verb ought to do it. We’ll get more practice
using $time_utils:

@create $thing named timer
@describe timer as "A simple timer, such as you might find
in the kitchen."

Now we’ll start with a prototype, to see if we can make it work at all, then refine
it and make it more robust. With programming (as with many kinds of projects) the
trick is, “Divide and Conquer.” If a task seems too big and overwhelming, divide it
into subtasks. If those are still too complicated, divide those further. I’m going to
show you many versions of one verb, to demonstrate that these programs don’t
emerge full blown from my head. After years and years of programming, I still work
simple-to-complex. Here we go.

First, I typed @display $time_utils: (note the colon), which gives me a list
of all the verbs on that particular utility package. I have something in mind that I’m
looking for, and that just comes with experience and lots of exploring. You could
also type help $time_utils. Aha, here is what I’m looking for,
$time_utils:parse_english_time_interval. This will let me take input like,
“1 minute” and turn it into a number of seconds. Let’s try out just that much:

@verb timer:set this for any rxd

@program timer:set
duration =
$time_utils:parse_english_time_interval(iobjstr);

Programming 131

player:tell(tostr(duration));
.

I created the verb, and then put the bare minimum of programming on it.
Iobjstr is the string that someone types in as the indirect object, and, since it can
be anything (it will be a duration, in English words), I gave this for any as the
arguments. In the program I set up a variable called duration, which stores the
output from one of the $time_utils verbs. My only goal at the moment is to
satisfy myself that I can take a string like “10 seconds” and get a number 10 out of it.
The second line of the verb is a simple output line, to player (that’s me, the
developer) to see if I did, in fact, get something intelligible. Note the
tostr(duration). duration is a number. player:tell takes a string. tostr()
turns a number into a string. So I’ve turned the number into a string (inner set of
parentheses), then I’m telling that string to player (me):

set timer for 10 seconds
 10

Success! But let’s test further:

set timer for 10
Incorrect number of arguments
set timer for Fred
Incorrect number of arguments

Hmm. I want to know if $time_utils:parse_english_time_interval is sending back
the STRING “Incorrect number of arguments”, in which case I can work with it, or
whether the system is giving me this message, in which case I’ll have to scratch my
head considerably more. I’m going to adjust my verb to answer this question:

@program timer:set
duration = $time_utils:parse_english_time_interval(iobjstr);
player:tell("Result: " + tostr(duration));
.

All I’ve done is insert the word “Result: ”, before the result I get back from
$time_utils. If I’m getting the string back from the utility, then I’ll see the word,
“Result: ” at the beginning. If I’m getting the message from the system, then I won’t:

set timer for 10
Result: Incorrect number of arguments
set timer for Fred
Result: Incorrect number of arguments

Yay! The message is coming from $time_utils, so I’ll be able to snag it easily and
deal with it gracefully. (In fact, there are ways to intercept system error messages,
too. See the note for the ERR datatype on page 158).

@program timer:set
duration =
 $time_utils:parse_english_time_interval(iobjstr);
if (typeof(duration) == NUM)

132 Programming

 "We got a good value for duration.";
 player:tell(tostr(duration));
else
 player:tell($string_utils:pronoun_sub(
 "Try something like 'set %t for 3 minutes'."));
endif
.

This version of the verb tests to see whether the result returned by
$time_utils:parse_english_time_interval was a number or not. If it’s a
number, then we got good input. If we didn’t get a number back, then we’ll give the
player a polite and instructive error message. The typeof() built-in function is what
I use to find out what sort of thing I’m working with. See help typeof(). At this
stage, I choose not to extract that error message into its own verb, so I do the
pronoun substitution on the fly. With more than a handful of lines, it’s also time to
put help text at the top of the verb, so I’ll be sure to do that in the next round. Test
the code as before. When you’ve elicited every message for every contingency you’ve
accounted for, then you’ve done enough.

Now it’s time to make the timer actually do its thing (drum roll, please):

@program timer:set
"Usage: set <this> for <duration>";
"Example: set timer for 1 hour";
duration =
 $time_utils:parse_english_time_interval(iobjstr);
if (typeof(duration) == NUM)
 "We got a good value for duration.";
 fork (duration)
 player:tell("Ding!");
 endfork
 player:tell("The timer starts ticking.");
else
 player:tell($string_utils:pronoun_sub(
 "Try something like 'set %t for 3 minutes'."));
endif
.

You should be able to follow most of this. The only new items are those fork
and endfork statements. When you set a timer, you set it down and go off and do
something else, while the timer does its thing independently. And that’s what’s
going on here. Everything between the lines, fork....endfork will be done at a
later time. How much later? The number of seconds that we give to fork as an
argument, in this case, duration. Anything after the endfork statement gets done
right away. Try this out, now. Use a duration like 1 minute. An hour is probably
longer than you want to wait.

You can check on background tasks (as these are called) with the @forked
command. See help @forked and also help @kill. Forked tasks hog system

mailto:@forked
mailto:@kill

Programming 133

resources, and should only be used in moderation. If you work on a MOO that has a
task scheduler, you should make a point of learning to use it (when you feel ready).

Well. When I tried it, it worked, but the “Ding!” got lost in some other text I
was displaying on the screen at the time. So on the next round, I’m going to indent
it, among other things. The only thing new is that I’m going to make the output
prettier. Pretty output is more important than you might think. What I want is,
“Ding! 10 seconds are up”, indented so that I’ll notice it more. I also want it to
differentiate between “60 seconds are up”, and “1 minute is up”:

@program timer:set
"Usage: set <this> for <duration>";
"Example: set timer for 1 hour";
duration = $time_utils:parse_english_time_interval(iobjstr);
if (typeof(duration) == NUM)
 "We got a good value for duration.";
 fork (duration)
 "Indent the message, for better visibility.";
 "Add text to indicate how much time has elapsed.";
 be = ((iobjstr[$] == "s") ? "are" | "is");
 message = iobjstr + " " + be + " up.";
 message = $string_utils:capitalize(message);
 player:tell(" Ding! " + message);
 endfork
 player:tell("The timer starts ticking.");
else
 player:tell($string_utils:pronoun_sub(
 "Try something like 'set %t for 3 minutes'."));
endif
.

The new material is within the fork/endfork statement. I construct a message
using smaller strings and the “+” sign to concatenate them together. Here’s the
mystery line:

be = ((iobjstr[$] == "s") ? "are" | "is");

Here it is in pseudo-code:

if (the last letter of iobjstr is "s")
 set the variable 'be' to the string "are"
else
 set the variable 'be' to the string "is"
endif

Divide and conquer. Working from the inner-most parentheses outwards:
Iobjstr is going to be something like, “10 minutes”, or “1 hour”. I want to know
whether the last character is an “s”. iobjstr[5] means the fifth letter of iobjstr.
iobjstr(length(iobjstr)) is the last letter of iobjstr. iobjstr[$] is a way to
abbreviate that. “$” in this context means “last”. Note the double “==” sign. If you
are assigning a value to a variable, use one: x = 3. If you are testing for equality, use

134 Programming

two: if (x == 3)... These two different usages lend themselves to typographical
errors. Be sure to look for a mistake in the number of “=” signs when you are
debugging.

Now what about that question mark? Am I uncertain of what I’m coding? No.
The paired symbols, “?” and “|” are an abbreviated way to do a simple if...then
statement:

result = (x ? a | b);

is the short way of writing:

if (x)
 result = a;
else
 result = b;
endif

 “x” can be an arbitrarily complicated expression.

So:

be = ((iobjstr[$] == "s") ? "are" | "is");

sets up a variable, be to be either the string "are" or the string "is" depending on
whether iobjstr ends in the letter "s" or not.

If you’ve played around with your timer, you may have noticed that you can set
it more than once. It’s actually a multiple timer. We could call this a bug, and add
code to see if the timer is ticking, and, if it is, tell the player that it’s currently in use.
Or we could call this a feature, and add code (and documentation!) to take advantage
of the fact. I choose the latter.

Good Times

We have a timer, and it times things. It dings when the time is up, and we can
set it more than once -- it’s a multiple timer. Being the forgetful sort, now I would
like to be able to type in an optional reminder message, so that when the timer dings,
I’ll know what it was I had set it for.

@program timer:set
"Usage: set <this> for <duration>";
"Example: set timer for 1 hour";
duration = $time_utils:parse_english_time_interval(iobjstr);
if (typeof(duration) == NUM)
 "We got a good value for duration.";
 "Ask for an optional reminder message.";
 message = $command_utils:read("an optional reminder
message");
 if (!message)
 be = (iobjstr[$] == "s" ? "are" | "is");
 message = iobjstr + " " + be + " up.";

Programming 135

 message = " Ding! " +
$string_utils:capitalize(message);
 endif
 fork (duration)
 player:tell(message);
 endfork
 player:tell("The timer starts ticking.");
else
 player:tell($string_utils:pronoun_sub(
 "Try something like 'set %t for 3 minutes'."));
endif
.

The new line here is:

message = $command_utils:read("an optional reminder
message");

Oho! Another utilities package, $command_utils. Check out its help text to see
what sorts of things are in this box of tools. Don’t worry about understanding it all;
just get acquainted a little bit, for future reference. We are going to read a line of
input from the user (player), and store its value in the variable message. If the user
typed <enter> without any text, then we’ll just build the message as before.

Notice that I took some of the message building out of the fork...endfork
construct and did it all ahead of time. This is a matter of programming style, which
is hard to teach. My reason was, put all the message building code in one place,
before the fork statement. Then when the forked duration is up, just tell the player
the message. In a situation where I wouldn’t know what the message should be until
after the time had elapsed, it would be appropriate to construct or select message text
within the body of the fork/endfork block.

Edit or type in the new version, and try it out. This is not bad, but I missed the
Ding! if I typed in a message. So I’m going to adjust it so that the output is more to
my taste. The next changes aren’t really substantive, so I’ve just noted the changes
with comments in the code itself.

@program timer:set
"Usage: set <this> for <duration>";
"Example: set timer for 1 hour";
duration = $time_utils:parse_english_time_interval(iobjstr);
if (typeof(duration) == NUM)
 "We got a good value for duration.";
 "Ask for an optional reminder message.";
 message = $command_utils:read("an optional reminder
message");
 if (!message)
 be = (iobjstr[$] == "s" ? "are" | "is");
 message = iobjstr + " " + be + " up.";
 message = " Ding! " +
$string_utils:capitalize(message);

136 Programming

 else
 "Add a Ding! because I can.";
 message = " Ding! " + message;
 endif
 fork (duration)
 player:tell(message);
 endfork
 player:tell("The timer starts ticking.");
else
 player:tell($string_utils:pronoun_sub(
 "Try something like 'set %t for 3 minutes'."));
endif
.

This version does almost exactly what I want. The last step (before doing up the
examine verbs and the help text) is to take a step back and look at the code and see if
I can make it any better. I notice that I am prepending “Ding!” in two places, and
can consolidate that. Now that you understand what more of the code means, some
of the comments are superfluous, and I’m going to take them out. That last else
statement is pretty far from its matching if statement, so I’m going to add a
comment down there. And I found the Ding! message still not quite prominent
enough, so I’m going to use a variant on player:tell to put it between blank lines.
Here is my final version:

@program timer:set
"Usage: set <this> for <duration>";
"Example: set timer for 1 hour";
duration = $time_utils:parse_english_time_interval(iobjstr);
if (typeof(duration) == NUM)
 "We got a good value for duration.";
 message = $command_utils:read("an optional reminder
message");
 if (!message)
 be = (iobjstr[$] == "s" ? "are" | "is");
 message = $string_utils:capitalize(iobjstr + " " +
 be + " up.");
 endif
 message = " Ding! " + message;
 fork (duration)
 player:tell_lines({"", message, ""});
 endfork
 player:tell("The timer starts ticking.");
else
 "Didn't get a good value for duration.";
 player:tell($string_utils:pronoun_sub(
 "Try something like 'set %t for 3 minutes'."));
endif
.

Programming 137

Last but not least, we’ll add help text and examine verbs. We’ve done this
before:

@prop timer.help_msg {} rc

@edit timer.help_msg
enter
This is a simple timer. To use it, type 'set timer for
<duration>'.
Here are a few examples:

 set timer for 3 minutes
 set timer for 45 seconds
 set timer for an hour

The timer will prompt you for an optional reminder message.

You can time more than one thing at once. That is, you
don't have to wait until the first time is up before setting
the timer for another thing. Reminder messages are
especially helpful when you are timing several things
simultaneously.
.
save
done

@prop timer.obvious_verbs {} rc

@edit timer.obvious_verbs
enter
 set %<what> for <duration>
 give/hand %<what> to <anyone>
 get/take %<what>
 drop/throw %<what>
 help %<what>
.
save
done

@verb timer:examine_verbs tnt rxd

@program timer:examine_verbs
what = dobjstr;
vrbs = {};
for vrb in (this.obvious_verbs)
 vrbs = {@vrbs, $string_utils:substitute(vrb, {{"%<what>",
what}})};

138 Programming

endfor
return {"Obvious verbs:", @vrbs};
.

Voilà, a finished product that does something useful! As you can see, objects
and verbs evolve, from gleams in their creators’ eyes to simple proof-of-concept
prototypes, to fancy versions with whistles and bells, to finished products with nice
exam verbs and help text.

What’s Big and Red and Eats Rocks?

When I first started planning this tutorial, I wanted to make a small pet.
Something that one could interact with, something that could respond in a limited
way to things happening around it, something that would seem to take on “a life of
its own”, which is part of the true magic of programming on a MOO. So for our final
project, we’re going to make a big red rock eater.

First, the brainstorming. Petting the big red rock eater should generate more
interesting results than petting a rock. There should be a command of the form,
feed <anything> to Red. Hmm. What should happen to things that get fed to
Red? Should they disappear? Should we make a special place called “RedBelly”?
Should it be possible to feed a player to Red? That might be an interesting experience,
but not all players are gracious about being moved. If it eats, then it would be nice to
have a good VR way to get things back or have them re-appear. Should it excrete?
Maybe it could go hunting and find some sort of treasure, like a cat finding a mouse.
Or maybe it could be like a cartoon character and reach into its own innards and
produce a previously-eaten object. I’ll have to think about that one. Should it talk?
How about if it had variable color spots? I want it to have a gender, so we’ll make it a
kid of the generic gendered object. If it only eats rocks, then I’ll need a way of
deciding whether a thing is a rock. Or maybe it eats anything, but is especially fond
of rocks. How about a verb to tickle the rock eater? Nah. It wouldn’t effect any
change in state, and emote works just as well. So let’s pass on that one. (I know, the
same could be said of the :pet and :feed verbs on the pet rock, but those were
instructional exercises.) Maybe it would eat rocks in the vicinity spontaneously. Or
maybe not. It should have a repertoire of spontaneous actions, things that it “just
does” from time to time. I know what cats do, but will have to think of particulars
for rock eaters. Still, the concept is good. Maybe it’s like a Tamagotchi™, and if you
don’t take good enough care of it, it dies! Or maybe if it gets hungry enough, it eats
its owner and the owner gets booted! (Fun thoughts, but maybe that’s taking things
a bit too far.) Maybe, though, its description could change depending on how
hungry it is -- like the rock gathering moss. That would be a good compromise.

That’s how I typically start a project. I write down everything I can possibly
think of, adding to the list over the course of several days (sometimes weeks, or even
months). I consider possibilities, no matter how far-out, and pose myself problems.
Some things I already know how to do, because I’ve done the same or similar things
before. Others I may have to research.

mailto:@vrbs};

Programming 139

The next step, then, is to create an object and start fleshing it out, making it
more complex as I go along:

@create $thing named "a big red rock eater", "big red rock
eater", "red rock eater", "rock eater", "eater", "brre",
"Red"

I decided at the last minute to name mine “Red”. Feel free to name yours
something else. Naming is actually hard, sometimes. You have to decide what you
want people to see when they enter a room (for example): "You see a big red
rock eater here," or "You see Red here." I may yet change my mind and
rename him so that the name is Red, and "big red rock eater" appears in the
description, instead. (The system ignores capitalization – so “red” and “Red” would
both refer to our big red rock eater – except that it preserves capitalization when
displaying text.)

@rename big red rock eater to "Red"

or how about:

@rename red to "Red (a big red rock eater)", "a big red rock
eater", "red rock eater", "rock eater", "eater", "Red"

There are some other options that I may explore later, in particular a :title
verb, which usually but doesn’t always return an item’s name. I might want it to be
"Red (a big red rock eater)" sometimes, and sometimes just, "Red". I’ll defer
that for now, but it’s an option to keep in mind.

@describe <your rock eater> as "<your idea of what a big red
rock eater looks like>"

Aha! Food will go where any other LambdaMOO food goes, that is, to its home
if it has a .home property defined on it, otherwise to its owner’s home. Whew, I’m
glad to get that off my mind. (Creative development rarely follows a logical, linear
sequence.)

Now that I’ve resolved the food issue to my satisfaction, let me show you a fun
(optional) thing you can do with the description, which will further enrich your
pronoun substitution skills. My rock eater is red, but he has spots, and I want the
spots to be a different color each time someone looks. For variety.

Recall that we wrote a :description verb to enhance the pet rock’s description
with the addition of some moss. Our strategy here will be similar, with a custom
description verb. In that verb, we will determine the color of the rock eater’s spots.
But we’ll refer to the color in the description itself. Stay with me, here:

@property red.color "blue" r

Notice, again, that the property is r and not rc. That’s because I intend to
change it from within a verb, later, and not from the command line.

Start simple, then get fancy. For now, he’ll have blue spots. Then we’ll work on
variable-colored spots. In my examples, I’m going to give the rock eater a fairly
generic description, so as not to meddle with your own idea of the critter’s
physiognomy:

140 Programming

@describe red as "You see a big red rock eater with
%[tcolor] spots."

@verb red:description this none this rxd

@program red:description
base_description = pass(@args);
return $string_utils:pronoun_sub(base_description);
.

Here’s what’s going on with the new fancy footwork. Look first at the
.description property. Recall that the “%” sign is a special symbol used by
$string_utils:pronoun_sub. The square brackets delimit a unit of text that
$string_utils:pronoun_sub will work on. The initial “t” inside the square
brackets refers to this, a special variable in MOOcode that means the object on
which the current verb is defined – here, the big red rock eater. The rest of what’s in
the square brackets is the name of a property on the object, in this case, color,
which we just added. So in essence we’re telling $string_utils:pronoun_sub to
substitute this.color for %[tcolor], and it does. Take a look at your rock eater
now!

If my rock eater were always going to be red with blue spots, I would have just
written that into the description and not gone to all the trouble. But I’m laying a
foundation.

Next, I want the color of the spots to change. I’ll start with a list of colors to
choose from:

@prop red.color_list {} rc

@edit red.color_list
enter
blue
green
yellow
purple
orange
brown
tan
black
white
.
save
done

Make up your own list of colors. It can be any length. Now, in the description
verb, we’re going to select one of these colors at random and put that color into the
property this.color. Then we’ll do the substitution:

mailto:@args

Programming 141

@program red:description
base_description = pass(@args);
"Pick a random color for the spots.";
this.color = this.color_list[random($)];
return $string_utils:pronoun_sub(base_description);
.

The only new thing here is this.color_list[random($)], and even that isn’t
completely new, because of our work with the .moss_list property on the pet rock.
Working from the inside out, then. “$”, when used inside the square brackets, refers
to the number of elements in the list. That’s why it doesn’t matter how long your
.color_list is. If you add more colors later, or remove some, changing the length
of the list, the code will still work. random($) (again, when within square brackets)
gives a random number between 1 and the length of the list. So, this.color =
this.color_list[random($)] sets the property this.color equal to a random
element of the list this.color_list.

Here’s my whiz-bang fancy version – see if you can figure out what’s going on
here:

@rmprop red.color
@prop red.color1 "blue" r
@prop red.color2 "tan" r

@describe red as "You see a big red rock eater with
%[tcolor1] and %[tcolor2] spots."

@program red:description
base_description = pass(@args);
"Fancy version! Two *different* colors of spots!";
index = random(length(this.color_list));
this.color1 = this.color_list[index];
this.color2 = (listdelete(this.color_list,
index))[random($)];
return $string_utils:pronoun_sub(base_description);
.

And so you see, unlike leopards, big red rock eaters can change their spots. And
hopefully you have at least a glimmer of how this technique could be adapted to
other situations. You could give your rock eater a variable number of heads, for
example.

Is It a Boy or a Girl?

Being a critter, let’s suppose that it has a gender. This step isn’t strictly
necessary, except that it allows me to use pronoun substitutions when typing in

mailto:@args
mailto:@args

142 Programming

template messages for you to copy, and will give you some additional practice with
pronouns as well. (Practice those pronoun substitutions!)

@chparent red to $gendered_object

What you get, by using this generic, is the verb for setting the gender, and a
bunch of properties that are used for the various pronouns. Now you can set its
gender, for example:

@gender red is male

Try typing:

@display red,

 Note the comma, which means you want to display all inherited properties.

Pet the Nice Rock Eater...

We’ll put a :pet verb on the rock eater, but this time we’ll get a more gratifying
response than we did from our rock. As always, we’ll start simple and work up. Our
initial goal will be to set up the :pet verb, and add message properties and their
corresponding verbs:

@prop red.pet_msg "You pet %t."
@prop red.opet_msg "%N %<pets> %t."

@verb red:pet_msg tnt rxd
@addalias opet_msg to red:pet_msg

@program red:pet_msg
return $string_utils:pronoun_sub(this.(verb));
.

@verb red:pet this none none rxd

@program red:pet
player:tell(this:pet_msg());
player.location:announce(this:opet_msg());
.

This level of programming is so fundamental that I can almost type it in
wholesale and have it work on the first try. (Though not quite -- I had a small typo in
one of the verbs, and had to go back and fix it. Always test everything.) I usually set
up the messages first, then the verb to do the pronoun substitution, then the verb
that uses the messages.

So far, so good. But unlike a rock, a rock eater ought to react. So lets liven
things up some. Here’s a design decision: When it reacts, will the player and others
in the room see the same thing, or different things? If I pet the rock eater, should I
see, “The rock eater looks at you adoringly”, and others see, “The rock eater looks at

Programming 143

Yib adoringly”? Or is it okay if everyone (including me) sees, “The rock eater looks at
Yib adoringly”? The second choice is easier. In the spirit of starting easy and getting
fancy, we’ll do that. If the results aren’t satisfying, we can gussy things up some
more, later.

But now I have a dilemma. My short-range plan is to add a message such as, “%T
thumps his tail happily.” But my long-range plan is to have an optional list of
possible responses, and maybe I could use that list for more than one thing (after he’s
fed, for example). I want to name the message property in a way that is specific
enough to be instructive to someone reading the code later, but general enough that I
don’t have to limit myself to the :pet verb. I think I’m going to make it a happy
response, and later, if the occasion arises, I can add unhappy responses and/or neutral
responses.

@prop red.happy_response_msg "%T looks at %n adoringly." rc
@addalias "happy_response_msg" to red:pet_msg

@program red:pet
player:tell(this:pet_msg());
player.location:announce(this:opet_msg());
player.location:announce_all(this:happy_response_msg());
.

Test this. Notice the call to player.location:announce_all. There are three
forms of the :announce verb on the generic room. :announce announces text to
everyone except the player who typed the command. :announce_all announces
text to everyone, including the player who typed the command.
:announce_all_but takes an additional argument that specifies a list of objects not
to see the text. We’ll use the third form later.

Now to diversify. Just as I’ve typed in a list of colors, I want to have a list of
happy responses, and I want the message to select one of them. And, for
compactness, I want to do it in the same message verb that I’m already using.

Here is the strategy: The :pet_msg verb is going to fetch this.(verb), i.e. its
corresponding message. If it’s a quoted string (that’s all we have, so far), then just do
a pronoun substitution on that string. If it’s a list (of strings), then select one of them
at random, and then do the pronoun substitution:

@program red:pet_msg
"If it's a list, pick one at random.";
"Then do the pronoun substitution.";
msg = this.(verb);
if (typeof(msg) == LIST)
 msg = msg[random($)];
endif
return $string_utils:pronoun_sub(msg);
.

First, we’ll test it to make sure all the old messages work fine. (Do that now.)

144 Programming

Then, edit red.happy_response_msg to be a list of strings:

@edit red.happy_response_msg
enter
%T thumps %[tpp] tail happily.
%T makes a rumbling noise in %[tpp] throat, reminiscent of a
cat's purring.
%T sighs contentedly.
%T does a happy little dance.
.
save
done

As with %[tcolor], $string_utils.pronoun_sub translates %[tpp] into
this.pp, which is a gendered object’s possessive pronoun.

Now, pet the nice rock eater to make sure that you get an appropriate variety of
responses.

It Eats Rocks... Right?

We want to be able to feed rocks (and maybe other things) to the big red rock
eater. Design decision: Shall it eat only rocks, or shall it eat anything, but especially
like rocks? I choose to go for diversity on this one, so that you can feed the rock eater
without having to hunt around for a rock. But either way, we’ll need a strategy to tell
whether an item is a rock or not, and there are some pitfalls there. Another design
decision: Shall the rock eater eat players, or shall it be a domesticated rock eater that
doesn’t eat players? If it eats players, what happens to them then? I choose to
sidestep that concern, and make a rock eater that eats rocks and other things, but
doesn’t eat players. (If I were going to have it eat players, I’d probably create a room
that was the rock eater’s tummy and move players there, where perhaps an adventure
of some sort would await them. As always, I would start with something simple and
make it progressively more complex.)

The syntax of the command will be, feed <anything> to <rock eater>.
When the rock eater eats something, it will be moved to the rock eater itself. After a
while, the food item will quietly go back to its home, or, if it doesn’t have a home, to
its owner’s home. We have to account for the possibility that an item can’t be moved
to the rock eater (maybe its owner locked it down, for example), so we’ll have
messages to handle that case, and we have to account for someone trying to feed a
player to the rock eater, and provide a suitable failure message. Accounting for every
kind of misuse you can possibly think of is what makes for good, robust
programming. We will have many opportunities to practice our pronoun
substitution.

First, I’m going to tackle some behind-the-scenes stuff, in particular, filtering
what things the rock eater can eat.

Baseline check – Do you still have your pet rock handy?

@move rock to red

Programming 145

You should get a message to the effect that either your rock doesn’t want to go,
or the big red rock eater didn’t accept it.

@verb red:acceptable tnt rxd

@program red:acceptable
"This verb returns a truth value if an item may be moved to
the rock eater, and 0 if an item may not be moved to the
rock eater.";
{item} = args;
if (is_player(item))
 "No players!";
 result = 0;
else
 result = 1;
endif
return result;
.

{item} = args; This is a special kind of assignment statement. This verb
won’t be called from the command line. But it needs to receive some information
(called arguments) so that it knows what is under consideration for acceptance. The
built-in variable args is a list of arguments. We only expect one argument to this
particular verb. The form {item} = args, is the preferred way of writing, item =
args[1]. This is an idiom of the language; it’s detailed in section 4.1.9 of the
programmer’s manual.

Here’s one of my philosophies of writing code: Nobody writes bug-free code. All
code will be maintained sooner or later. Even the person who writes the code
sometimes forgets what e was thinking when e wrote it. It is better to write longer
code that is easy to understand than to write compact code that is cryptic. If and
only if you can compact the code without undue sacrifice of clarity, then more
compact code is better.

Now, a shorter, more compact version:

@program red:acceptable
"This verb returns a truth value if an item may be moved to
the rock eater, and 0 if an item may not be moved to the
rock eater.";
"Players aren't accepted.";
{item} = args;
result = (is_player(item) ? 0 | 1);
return result;
.

And a shorter version still:

@program red:acceptable
"This verb returns a truth value if an item may be moved to
the rock eater, and 0 if an item may not be moved to the

146 Programming

rock eater.";
"Players aren't accepted.";
{item} = args;
return (is_player(item) ? 0 | 1);
.

Now try teleporting your rock to the rock eater. This should work. If you look at
Red, you shouldn’t see the rock, which is fine, since tummies are (usually) opaque.
But is the rock really in there? Type:

@contents red

to see. This will also remind you of the object number of your rock, in case you want
to teleport it back out again.

If you wanted to make a rock-shaped bulge in its tummy (say), you might alter
its :description verb and/or add a verb called :tell_contents, which is what
containers and rooms do. You would check the value of its .contents property and
go from there. (The details are left as an exercise for the intrepid new programmer.)

Now, to the business of seeing to it that stomach contents get returned
eventually.

The verb :acceptable is expected to return a truthful, silent answer, yes or no,
to the question, “Will object A accept object B?” The verb :accept does the actual
business of accepting (or rejecting), and may do any associated processing. For
example, if you have ever tried to join someone who was in a locked room, you got a
message saying that either you didn’t want to go, or the room didn’t accept you.
That’s done by the :accept verb. The :accept verb on the big red rock eater is
going to fork a task to move the incoming item back to some appropriate place at a
later time (if the item is acceptable). If the item is not acceptable (if it’s a player, for
example), then the :accept verb will just return a value of 0.

I had to tinker with the :accept verb quite a lot before it worked to my
satisfaction, so I’ll spare you the play-by-play development process. Don’t worry if
you don’t understand every detail, but do try to follow along. Later you might want
to write a custom :accept verb on some other object, and you’ll know to revisit this
example for a deeper understanding of it.

@prop red.digestion_duration 30 rc
This is the duration (in seconds) that a thing will stay in Red’s tummy. While

I’m testing, I’ll set it to something short, like 30 seconds. When I’m satisfied that
everything works, I’ll change it to something like an hour, maybe.

@prop red.return_item_home_msg "The housekeeper arrives and
drops off %[titem]." rc
@prop red.item "This will be set to item.name by the :accept
verb." r
@addalias "return_item_home_msg" to red:pet_msg

@verb red:accept tnt rxd

Programming 147

@program red:accept
"Hold an item (while digesting), then try to send it home.";
{item} = args;
if (result = this:acceptable(@args))
 fork (this.digestion_duration)
 "Is it still there?";
 if (item.location == this)
 "Figure out where to send it, and try to send it
there.";
 place = ($object_utils:has_property(item, "home") ?
 item.home |
 item.owner.home);
 item:moveto(place);
 "Now see if it actually arrived.";
 if (item.location == place)
 if ($object_utils:has_verb(place, "announce_all"))
 "Set up item.name for appropriate pronoun
substitution.";
 this.item = item.name;
 place:announce_all(this:return_item_home_msg());
 endif
 else
 "We failed to get rid of it gracefully, just get rid
of it.";
 this:eject_basic(item);
 endif
 endif
 endfork
endif
return result;
.

There is one subtlety in particular to which I would like to call your attention.
In the statement:

if (result = this:acceptable(@args))

I have done an assignment statement within the parenthetical conditional
statement. This is perfectly legal and is often done. It’s the same as:

if (this:acceptable(@args))
 <do stuff>
endif
return this:acceptable(@args);

except that I call the :acceptable verb once instead of twice, saving the result for
later.

And now (at long last) we are ready to write the :feed verb itself.

mailto:@args
mailto:@args
mailto:@args
mailto:@args

148 Programming

Chow Time!

After all we’ve been through, this part will be quite easy. Here’s the prototype:

@verb red:feed any to this rxd

@program red:feed
dobj:moveto(this);
if (dobj.location == this)
 player:tell("Red chomps hungrily.");
else
 player:tell("Red looks at you dubiously.");
endif
.

The item being fed to Red is the direct object of the command, and its object
number is stored in the built-in variable dobj. Red is the indirect object of the
command, and its object number will be stored in the built-in variable iobj, as well
as the built-in variable this (the object on which the currently-executing verb is
defined).

Here is the cleaned up, robust version:

@prop red.feed_msg "You feed %d to %t." rc
@prop red.ofeed_msg "%N %<feeds> %d to %t." rc
@prop red.no_feed_msg "You try to feed %d to %t." rc
@prop red.ono_feed_msg "%N %<tries> to feed %d to %t." rc
@prop red.ptui_msg "%T looks at %n dubiously. . o O (Ptui!
)" rc

@addalias feed_msg to red:pet_msg
@addalias ofeed_msg to red:pet_msg
@addalias no_feed_msg to red:pet_msg
@addalias ono_feed_msg to red:pet_msg
@addalias ptui_msg to red:pet_msg

@program red:feed
"Try to feed it something.";
dobj:moveto(this);
if (dobj.location == this)
 "It ate the whole thing.";
 player:tell(this:feed_msg());
 player.location:announce(this:ofeed_msg());
 this.location:announce_all(
 this:happy_response_msg());
else
 "Ack! Ptui! Wouldn't accept it.";
 player:tell(this:no_feed_msg());
 player.location:announce(this:ono_feed_msg());

Programming 149

 this.location:announce_all(this:ptui_msg());
endif
.

Have you been testing all along? This works pretty darned well. Except that I
tried to feed my pet rock to the rock eater before it had been returned again (I test a
lot), and I got a traceback:

#26703:feed, line 2: Invalid indirection
(End of traceback)

I can reproduce the error by trying to feed Red an object that doesn’t exist:

feed mother-in-law to red

#26703:feed, line 2: Invalid indirection
(End of traceback)

Looking at line 2, we’re trying to move dobj. Aha! We need to add a check to
make sure that the specified direct object is a valid object:

@program red:feed
"Try to feed it something.";
if (valid(dobj) && (dobj.location in {player,
player.location}) && (this.location in {player,
player.location}))
 dobj:moveto(this);
else
 "Either the thing being fed or the rock eater is not in
the vicinity, or the thing being fed isn't a valid object.";
 player:tell("I don't see that here.");
 "Just quit this verb right away.";
 return;
endif
if (dobj.location == this)
 "It ate the whole thing.";
 player:tell(this:feed_msg());
 player.location:announce(this:ofeed_msg());
 this.location:announce_all(this:happy_response_msg());
else
 "Ack! Ptui! Wouldn't accept it.";
 player:tell(this:no_feed_msg());
 player.location:announce(this:ono_feed_msg());
 this.location:announce_all(this:ptui_msg());
endif
.

I chose not to extract, “I don’t see that here,” into its own message. It isn’t
something I ever expect to change; I don’t need to do any pronoun substitution; and
it does double duty as a comment within the code. Also during play testing, I found
out that someone could feed Red remotely, and I don’t want that because the

150 Programming

messages display to the wrong place and seem incongruous, so I added a check to
make sure that the thing being fed and the rock eater were either in the player’s
possession, or in the same location as the player. I should go back and add that same
check to the :pet verb, too. I might not have found this bug on my own. Someone
else noticed it. I like to invite friends to play-test my objects before I present them to
the public, because that helps me find and fix the bugs I didn’t think to look for.

@program red:pet
if (this.location in {player, player.location})
 player:tell(this:pet_msg());
 player.location:announce(this:opet_msg());
else
 player:tell("I don't see that here.");
endif
.

As a last little fillip, I offer the following: Since our pet_msg verb can handle a
string or a list, I’m going to edit red.ptui_msg for greater variety:

@edit red.ptui_msg
enter
%T takes one taste of %d and promptly spits %[dpo] out
again. . o O (Ptui!)
%T eats %d, but then, with a look of great consternation on
%[tpp] face, acks %[dpo] back up again. . o O (Ptui!)
 .
save
done

 (%[dpo] is the direct object’s object pronoun.)

Whew, I’m hungry! I think I’ll have a snack before going on to the next part.

The Breath of Life

The last step in making a pet is to enable it to respond spontaneously to things
that happen around it, and thus seemingly take on a life of its own.

Whenever a verb calls a room’s :announce verb (or one of its variants), the
:announce verb calls the :tell verb on every object in the room that has one, and
sends the specified text in as an argument. So by adding a :tell verb to our rock
eater, it will automatically start “hearing” things going on around it. And then it can
respond. We’ll put in a random delay to make its actions seem even more
independent:

@prop red.response_delay 20 rc

A delay (in seconds).

@prop red.action_msg {} rc
@edit red.action_msg

Programming 151

enter
%T chases %[tpp] tail in a slow, circling ballet.
%T leaps into the air and does a back flip, in a comic bid
for attention.
%T snuffles around, looking for rocks.
%T looks at you with big, sad, soulful eyes.
%T makes a wurfling sort of noise.
.
save
done

@addalias action_msg to red:pet_msg

@verb red:tell tnt rxd

@program red:tell
fork (random(this.response_delay))
 this.location:announce_all(this:action_msg());
endfork
.

Now say, “Boo,” or something. You can check on your forked tasks by typing
@forked.

Whoa! Down Boy!

@kill red:tell

Well! By now you’ve discovered that once started, Red just won’t quit. This is
because Red hears Red’s own text, and responds to it! So what you get is a sort of
chain reaction. Really, this is too much of a good thing, so now we have to work on
toning things down some.

@program red:tell
fork (random(this.response_delay))
 this.location:announce_all_but({this},this:action_msg());
endfork
.

First, we’ll use that third form of :announce that I mentioned earlier,
:announce_all_but. This way you won’t get an endless chain of actions. But
you’ll still get an action out of Red every single time there’s a noise in the room. So
for my next trick, I’m going to make it so that sometimes he responds, and
sometimes he doesn’t:

@prop red.action_odds 3 rc

@program red:tell

152 Programming

if (random(this.action_odds) == 1)
 fork (random(this.response_delay))
 "Odds of responding are 1 in this.action_odds.";
 this.location:announce_all_but({this},
this:action_msg());
 endfork
endif
.

This is better. But you might want a quieter pet still. (I did.) Whenever I would
pet or feed Red, the messages would trigger an additional response, which still
seemed like too much. So I can go back and edit the :pet and :feed verbs, or I can
tinker with the :tell verb a bit more and prevent Red from hearing any of his own
messages in the first place. Take a quick look at help callers(). This built-in
function returns a list of all the object/verb pairs (tuples, actually -- there’s additional
information) that resulted in the current verb being called. So we’re going to take a
look at callers() from within red:tell and filter out any noise generated by Red
himself. This is pretty advanced stuff, and even I do a bit of preliminary prototyping
before using callers(), because I always forget just how it goes. Here’s the
prototype:

@prop red.callers 0 r

A temporary property to hold data that I want to look at.

@program red:tell
this.callers = callers();
if (random(this.action_odds) == 1)
 fork (random(this.response_delay))
 this.location:announce_all_but({this},
this:action_msg());
 endfork
endif
.

Pet red, to trigger the process. Now we will use a special form of the eval
command, “#” to inspect the results:

#red
=> #26703 (Big Red Rock Eater)

#red.callers
=> {{#23920, "announce_all", #2, #3, #58337}, {#23920,
"announce_all", #24442, #17755, #58337}, {#23920,
"announce_all", #61050, #9805, #58337}, {#26703, "pet",
#58337, #26703, #58337}}

By scrutinizing it, I find the number of my rock eater (#26703 in this example).
Your numbers will be different, but look anyway. This is list of lists. I want to
consider only the first elements, and see if Red’s :tell verb was indirectly called by

Programming 153

Red. If it wasn’t, then and only then will Red react. To do that, I’ll use
$list_utils:slice (there’s help text – give it a try):

@program red:tell
"Respond to noises generated by anything *except* this.";
if (random(this.action_odds) == 1)
 if (!(this in $list_utils:slice(callers())))
 fork (random(this.response_delay))
 this.location:announce_all_but({this},
 this:action_msg());
 endfork
 endif
else
 "This was the source of the noise, so do nothing.";
endif
.

@rmprop red.callers

Test this by saying things, petting your rock eater, feeding it, etc. Check
@forked a lot.

This is almost perfect. (Wouldn’t you know.) If you were to trigger Red’s :tell
verb and fork the task, then move Red to #-119, you would get a traceback, because
#-1 doesn’t have an :announce_all_but verb. So we’ll add a check for that:

@program red:tell
"Respond to noises generated by anything *except* this.";
if (!(this in $list_utils:slice(callers())))
 if (random(this.action_odds) == 1)
 fork (random(this.response_delay))
 if ($object_utils:has_verb(this.location,
"announce_all_but"))
 this.location:announce_all_but({this},
this:action_msg());
 endif
 endfork
 endif
endif
.

Last, I take a step back to see if I can condense the code without sacrificing
clarity, and I think I can. Those two nested if statements can be consolidated into
one:

@program red:tell
"Respond to noises generated by anything *except* this.";
if (!(this in $list_utils:slice(callers())) &&

19 #-1 is the null object. It has no properties or verbs.

154 Programming

 (random(this.action_odds) == 1))
 fork (random(this.response_delay))
 if ($object_utils:has_verb(this.location,
"announce_all_but"))
 this.location:announce_all_but({this},
this:action_msg());
 endif
 endfork
endif
.

Now all that’s left is to tinker with red.action_odds and
red.response_delay until you get the right feel for your pet. Some rock eaters
might be placid, others might be frisky.

Care and Feeding of a Big Red Rock Eater

Just a last little bit of grooming to do, and we’re done:

@prop red.obvious_verbs {} rc

@set red.obvious_verbs to {}
@edit red.obvious_verbs
enter
 pet %<what>
 feed <anything> to %<what>
.
save
done

@verb red:examine_verbs tnt rxd

@program red:examine_verbs
what = dobjstr;
vrbs = {};
for vrb in (this.obvious_verbs)
 vrbs = {@vrbs, $string_utils:substitute(vrb, {{"%<what>",
what}})};
endfor
return {"Obvious verbs:", @vrbs};
.

This is the usual stuff. I deliberately omitted @gender %<what> from the list of
examine verbs, because that’s an owner-only verb: You know it’s there, and no one
else needs to.

mailto:@vrbs};

Programming 155

@prop red.help_msg {} rc

@edit red.help_msg
enter
This is %t. Treat %[tpo] with love and kindness and %[tps]
will be your friend forever.

%[Tps] likes to eat rocks, but will eat just about anything
except players. (Things which have been eaten will be moved
back to their homes after a while.)
.
save
done

@verb red:help_msg tnt rxd

@program red:help_msg
"This message has its own separate verb because the regular
message verb returns a random element of a list. But if
this.help_msg is a list, we want the whole thing.";
return $string_utils:pronoun_sub(this.(verb));
.

This is your big red rock eater. Treat it with love and kindness, and it will be
your friend forever.

Afterword

That’s about it.

We started with the very rudiments of adding a verb to an object, and have
worked our way through some fairly sophisticated stuff. You may or may not feel
that you’ve grasped it all, but my primary goal was to give you some exposure to how
MOOcode works, and to make it all less intimidating, in hopes that you will be
inspired to explore further.

Be bold! Experiment. Try things. Don’t be afraid of breaking something. There
is very little on the MOO than can be harmed by accident, and even less that can’t be
fixed. Go for it!

156 Programming

MOO Programming Reference

This section is geared toward people who are at least somewhat comfortable with
programming. For the fine points I refer you to the programmer’s manual itself.
Here, I have tried to present an overview of the MOO programming language in a
format that is biased towards ease of reference rather than exhaustive explication. I
have provided brief explanations of some points where I think clarification might be
helpful.

Data Types

Variables are not of fixed data type; they become the data type of the value
assigned to them. Use typeof(<variable>) to see what you’ve got.

INT Integer: 29, 0, -0, 5

FLOAT Floating point number: 29.0, 0.0, 5.0

NUM Historical, same as INT. (FLOAT was a later addition.) FLOATs
and INTs don’t mix and match. Use toint() or tofloat() to force
one to be the other. Note that (1 == 1.0) evaluates to false.

STR A quoted string: "pickles". To include the double quote mark
itself in a string, precede it with the backslash character:
"Oliver shouts, \"Yow!\"" Strings are case-insensitive:
("carrot" == "CarROT") evaluates to true. Use
equal("carrot", "CarROT") if you need to differentiate
between the two.

OBJ An object, e.g: #1234. In conditional statements, an object by
itself evaluates to false. Use valid(<object>) instead. Some
special objects:

• #-1 or $nothing. Not valid, but anything may be moved
there. The canonical invalid object.

• #-2 or $ambiguous_match.

• #-3 or $failed_match

• $garbage This object and kids of it are valid but not useful.
They are all owned by the special system player Hacker.
When an object is recycled, it becomes a kid of $garbage.

Programming 157

LIST {1, 2.5, "a string", {"a", "sublist"}, #321,
E_RANGE, 2.5}

LISTs are designated with curly braces ({}), may nest to an
arbitrary number of levels, and their elements need not be of the
same data type. Their elements are preserved in order and may
include duplicates (i.e. they are not like mathematical sets).

The @ operator yields the elements of the list as separate
elements. Another way to phrase this is that it is the inverse of
putting curly braces around some elements. Two canonical uses:

<some-list> = {@<some-list>, <new_element>}; This is
the usual way to add an element onto the end of a list. If a is
{1, 2, 3}, and b is 4, then {@a, b} gives the four-element list
{1, 2, 3, 4}, whereas {a, b} would give the two-element
list {{1, 2, 3}, 4}.

pass(@args); This causes the identically-named verb on the
current object’s parent to be run with the same argument list. If
you just did pass(args), then the arguments to the verb being
called would have an extra set of braces around them, thus
making the argument list {{a, b, c}}, for example, instead of
{a, b, c}.

<element> in <some-list> will return the (1-based) index of
the first instance of <element> in <some-list> if it is present,
0 otherwise. A typical usage might be:

if (item.location in {player,
 player.location})
 <exprs>;
endif

mailto:@
mailto:@<some-list>, <new_element>
mailto:@a, b
mailto:@args

158 Programming

ERR E_NONE no error

E_TYPEtype mismatch

E_DIV division by zero

E_PERM permission denied

E_PROPNF property not found

E_VERBNF verb not found

E_VARNF variable not found

E_INVIND invalid indirection

E_RECMOVE recursive move

E_MAXREC too many verb calls (max recursion)

E_RANGE range error (subscript too large, or zero, or
negative)

E_ARGS incorrect number of arguments

E_NACC move refused by destination (i.e. object
not acceptable)

E_INVARG invalid argument

E_QUOTA resource limit exceeded

E_FLOAT floating-point arithmetic error

Errors can be raised (yielding a traceback) or caught (then
handled or ignored). The following two constructs are used to
trap errors and deal with them:

`<expr1> ! ANY => <expr2>'

See section 4.1.12 of the programmer’s manual. The single
quotes are part of the expression, and are specifically back single
quote and forward single quote.

try
 <exprs>;
except ANY
 <alternate exprs>;
endtry

See sections 4.2.7 and 4.2.8 of the programmer’s manual.

Subscripting

Everything is 1-based.

You can subscript lists or strings.

Programming 159

<list-or-string>[<expr1>..<expr2>] gives slices (sub-list or sub-string).
<expr1> and <expr2> must be in range; <list-or-string>[$] is the last
element or character.

The following are well-formed:

<variable> = <list-or-string>[<expr>];
<variable> = <list-or-string>[<expr1..expr2>];
<list-or-string>[<expr1>] = <expr2>;
<some-list>[<expr1>..<expr2>] = <expr3>;
<some-string>[<expr1>..<expr2>] = <expr4>;

Note that in the above example, <expr3> must evaluate to a list and <expr4>
must evaluate to a string.

Accessing Properties and Verbs on Objects

$<something> is the same as #0.<something>.

You can use parentheses to access property names and verbs dynamically:

<object>.(<calculated-property-name>)
<object>:(<calculated-verb-name>)

Variables

Variables are local and dynamic, coming into existence when assigned a value.
For global variables, define and use a property.

In addition to the data types themselves (which evaluate to integers), the
following built-in variables are provided:

this The object on which the currently-running verb is defined.

player The object number of the player who typed in the command.

caller The objnum of the object on which the calling verb is defined, or
player, if the verb was called from the command line.

verb The name by which the currently-running verb was invoked.
Verbs may have aliases.

args The list of arguments with which a subroutine was called or, if a
command-line verb, with which the command was invoked.

argstr Everything that was typed in after the verb name on the command
line.

dobj The direct object as parsed from the command line.

dobjstr The string from which dobj was matched.

160 Programming

prepstr The string that was parsed as the preposition.

iobj The indirect object as parsed from the command line.

iobjstr The string from which iobj was matched.

Any of these may be reassigned within a verb and their values will persist into
the next verb call except that caller will change to the current object, and a
changed value of player will not persist unless the verb’s owner is a wizard.

Scattering Assignment

Several variables may be assigned values in a single line, and this is often done to
assign incoming arguments to named variables. A typical example might be:

{who, what, ?where = player.location, ?when=time()} = args;

See section 4.1.9 of the programmer’s manual for a detailed explanation.

Operators

The following operators apply, in order of precedence:

!

-

not

arithmetic negation (without a left operand)

^ exponentiation

*

/

%

multiplication

division

modulo

+

-

addition (note, + also concatenates two strings)

subtraction

==

!=

<

<=

>

>=

in

is equal to (note, easy to confuse with the assignment operator –
nasty!)

is not equal to

less than

less than or equal to (note, =< doesn’t work)

greater than

greater than or equal to (note, => doesn’t work)

element position in a list

&& logical “and”

Programming 161

|| logical “or”

… ? … | … the conditional operator.

<expr1> ? <expr2> | <expr3>

is equivalent to:

if (<expr1)
 <expr2>;
else
 <expr3>;
endif

= assignment (note, easy to confuse with a test for equality – nasty!)

Assignments may appear within expressions. Use parentheses liberally to avoid
mistakes and confusion.

Truth Values

0, -0, 0.0, -0.0, "", {}, errors, and objects all evaluate to false. Anything
else evaluates to true.

Compound Statements

Use a semicolon after expressions within the body of a compound statement, but
not after lines of the compound statement itself, thus:

if (<expr1>)
 "This is a comment.";
 <expr2>;
 <expr3>;
elseif (<expr4>)
 <more-exprs>;
elseif (<expr5>)
 <something else entirely>;
else
 "None of the above.";
 <final-exprs>;
endif

162 Programming

Looping

for <variable> in (<some-list>)
 <exprs>;
endfor

for <index> in [<int1>..<int2>]
 <exprs>;
endfor

while (<condition>)
 <exprs>;
endwhile

break;

break <name>;

continue;

continue <name>;

(See section 4.2.5 of the programmer’s manual for the fine points of break and
continue.)

Background Tasks

fork (<delay-in-seconds>)
 <exprs>;
endfork

fork <variable> (<delay-in-seconds>)
 <exprs>;
endfork

In the second example, <variable> receives the number (task_id) of the forked
task.

Time Management

A task is the execution of a command from start to finish, or the execution of the
statements within a fork/endfork statement from start to finish. Tasks are
identified with numbers, and are allotted a fixed number of ticks and a fixed number
of seconds for execution. The LambdaCore default is 30,000 ticks for a foreground

Programming 163

task and 15,000 ticks for a background task. Properties to override these numbers
may be added to the object $server_options by a wizard and inspected (if present)
by programmers.

If a task runs out of ticks, it is unceremoniously terminated by the system. If a
task is in danger of running out of ticks, a programmer may get a new allotment by
suspending the task briefly (note, suspend ($login.current_lag) is considered
polite). When a task suspends, it obtains an additional allotment of ticks, so it is not
uncommon to find or place a suspend() statement either right before or inside of a
loop.

The utility verb $command_utils:suspend_if_needed() might suggest itself,
but in fact it uses up a fair number of ticks, itself. Current fashion is to use a line of
the form:

((ticks_left() < 3000) && suspend($login.current_lag));

See also sections 4.4 and 5.2.8 of the programmer’s manual.

Argument Specifiers

When defining a verb on an object (with the @verb command), you must
provide specifiers for the arguments with which the verb will be invoked.

The allowable specifiers are:

• direct object specifiers

this
any
none

• prepositions

none
any
with/using
at/to
in front of
in/inside/into
on/onto/upon/on top of
from/from inside/out of
over
through
under/underneath/beneath
behind
beside
for/about
is

164 Programming

as
of/off of

• indirect object specifiers

this
any
none

Definite and indefinite articles are omitted. When deciding which argument
specifiers to use, it is helpful to imagine what a user would actually type when
invoking the command, then generalize from that. When writing subroutines that
aren’t intended to be invoked from the command line, specify the arguments as
“this none this”.

Eval

The eval command evaluates a string as MOOcode. Like say and emote, it can
be abbreviated to a single character command, ;. A second form, ;; evaluates a
sequence of expressions, each terminated by a semicolon (as in a verb). Compound
statements don’t end in a semicolon. The form using two semicolons prints out 0 as
its value; if you want to see results you should include a call to player:tell(); at
the end:

;;"Count players who have more than ten aliases"; total = 0;
for dude in (players()) if (length(dude.aliases) > 10) total
= total + 1; endif endfor player:tell("Total: " +
tostr(total));

A second form of eval, “#” matches an object by name if it’s in your vicinity,
and is useful for looking at properties or just quickly finding out the object number of
something close by. Property names can be chained:

#rock
#rock.moss_list
#yib p
#yib.aliases p
#yib.location.owner.name p

The last form, terminated by “ p” matches the name of a player even if you’re
not in eir vicinity, so that you don’t have to know eir number to look at a (readable)
property on em. “#” can also be used with object numbers directly:

#58337.location.contents

Use @setenv to set up some commonly-used variable settings in advance:

@setenv me = player; here = player.location;

Inspect the result with

#me.eval_env

Programming 165

See also help eval and help #.

Ownership and Permissions

Every object has an owner. Every property on every object has an owner, but it
doesn’t have to be the same as the owner of the object. Every verb on every object
has an owner, but it doesn’t have to be the same as the owner of the object.

Task permissions are expressed as an object number, that of the player who owns
the verb currently being executed.

The function caller_perms() returns the task permissions of the calling verb,
or #-1 (an invalid object) if the currently running verb was called from the command
line.

Inherited verbs always have the same owner as the owner of the corresponding
verb on the parent or ancestor object. They run with that owner’s permissions,
except that wizard-owned verbs can set the task permissions to another (usually non-
wizardly) player.

To +c Or To –c, That Is The Question

Ownership of an inherited property depends on whether the property was
initially defined as +c or -c. If it was defined as +c (think “may be c hanged by the
owner of the child/descendent object”), then the property is owned by the owner of
the child/descendent object. If the property was initially defined as -c then the
property on all children and descendents is owned by the player who defined the
property on the parent/ancestor object, and its value can be changed by verbs running
with that player’s permissions. This becomes relevant when one is making a generic
object. If the owner of a child or descendent object will need to @set or otherwise
change the property, then define it as +c. This is typically done for messages, and
also for other parameters, for example the number of times one must turn the crank
before the jack in the box pops out. If, on the other hand, one of the verbs you write
on the generic will need to change the value of a property, then it should be defined
as -c so that the property on all descendent objects will still be owned by you. Then
your verbs, running with your permissions, can change it (for example, the number
of times the crank on the jack in the box has been turned so far).

When you make an object strictly for your own use, it really doesn’t matter
whether the properties are +c or -c. It becomes an issue when other people make
kids of your object. Then if a property that one of your verbs needs and tries to
change is mistakenly +c, the verb will encounter a permissions error. If you @chmod
the property to -c, then all new kids of the object will have that property owned by
you, but it isn’t changed retroactively for existing kids. If you make a property +c and
find out later that it should have been -c, you can change it on all descendents by
evaluating the following:

166 Programming

;$wiz_utils:set_property_flags(<object>, <property_name>,
<property_flags>)

You don’t have to be a wizard to use this verb – just the owner of the object.
Here’s an illustration, supposing that a generic conker is object #1234:

;$wiz_utils:set_property_flags(#1234, "thwaps", "r")

This would have the effect of making the .thwaps property on all descendents
of the generic conker readable but neither writable nor changeable (by owners of kid
objects), and the property would be owned by the author of the generic conker in all
cases (and could be changed by that player’s verb(s)).

Hidden Treasures

Some verbs are called automatically, seemingly invisibly. Here are some of them:

<object>:look_self Called when you look at <object>

<object>:description Called (if it exists) by :look_self

<object>:tell_contents Called (if it exists) by :look_self

<object>:enterfunc Called when something is moved to <object>

<object>:exitfunc Called when something is removed from
<object>’s .contents.

<room>:confunc Called when someone connects inside a room.

<room>:disfunc Called when someone disconnects inside a room.

<player>:confunc Called when a player connects

<player>:disfunc Called when a player disconnects

<object>:initialize Called when an object is created. Use, for
example to initialize parameters on the kid of a
generic object.

<object>:recycle Called right before an object is recycled.

<player-or-room>:huh Called if the parser can’t find an object with the
appropriate verbspec. This is how exits in rooms
are invoked without the exit objects’ having to be
in rooms, for example.

Programming 167

A Couple “Tricks of the Trade”

Sending mail messages from within a verb: The relevant verb is
$mail_agent:send_message. Personally, I always find the help text hard to read,
so I am providing this illustrative example, which I hope may be helpful:

;$mail_agent:send_message(me, {me},
 "This is the subject heading", {"Line1", "Line2", "",
 "Oooga boooga!"})

Creating objects on the fly is fun, and possible if you are not over quota. Here is
an example of how it’s done.

@verb me:test none none none rd

@program me:test
"Sample verb to demonstrate creating an object on the fly.";
thing1 = `$recycler:_create($thing) ! ANY =>
 $nothing';
if (valid(thing1))
 thing1:set_name("thing1");
 thing1:moveto(player.location);
 "If you create a lot of things, then you need to measure
them as you go to avoid a 'resource limit exceeded' error.";
 $quota_utils:object_bytes(thing1);
 player:tell("You now have something that you didn't have
before!");
else
 player:tell(
 "Couldn't create thing1. Don't know why.");
endif
.

test

To recycle an object (that you own) from within a verb:

$recycler:_recycle(<object>);

Programming Feature Objects

This is a very brief summary of the steps involved in creating a feature object. It
isn’t a tutorial on programming in general, but highlights a couple of quirks
associated with programming this particular kind of object.

First, create a kid of the generic feature object:

@create $feature named <your-FO-name>

Then describe it.

168 Programming

Then program some verbs on it. Note that the verbs have to have the “x”
permission flag set, so that they can be called from other verbs.

Then add help text. This can be done in either of two different ways. The first is
to edit your feature object’s .help_msg property. You should present each of the
verbs on your FO that are intended for public use (as opposed to internal
subroutines), give the syntax for the verb’s usage, and a brief explanation of what the
verb does. The other way is to put the documentation for each verb intended for
public use as a set of comments at the top of the verb. The second is the officially
preferred method (as per help $feature), but both will work.

THEN: In either case you must edit your FO’s .feature_verbs property. If you
put all the documentation in the help_msg property, then type:

;<your-FO>:set_feature_verbs({})

If you put the documentation for each public-use verb at the top of each verb,
then type:

;<your-FO>:set_feature_verbs({"<verb1>", "<verb2>", ... ,
"<last-verb>"})

If you wish to restrict who may add your feature object, write a custom
:feature_ok verb on it. This verb should return 0 if for whatever reason the person
may not add the feature, or a truth value otherwise. An example of when this might
come in handy might be a feature only for use by wizards.

See also help features and help $feature.

Built-In Functions

See the online help text or the programmer’s manual for the specifics of each
individual function – here’s what’s there:

The quintessential object-oriented function:

pass()

General operations applicable to all values:

typeof()
tostr()
toliteral()
toint()
tonum()

toobj()
tofloat()
equal()
value_bytes()
value_hash()

Operations on Numbers:

random()
min()

max()
abs()

Programming 169

floatstr()
sqrt()
sin()
cos()
tan()
asin()
acos()
atan()
sinh()

cosh()
tanh()
exp()
log()
log10()
ceil()
floor()
trunc()

Operations on Strings:

length()
strsub()
index()
rindex()
strcmp()
decode_binary()
encode_binary()

match()
rmatch()
substitute()
crypt()
string_hash()
binary_hash()

Operations on Lists:

length()
is_member()
listinsert()
listappend()

listdelete()
listset()
setadd()
setremove()

Manipulating Objects:

chparent()
valid()
parent()
children()
object_bytes()
max_object()
move()
properties()
property_info()
set_property_info()
add_property()
delete_property()
is_clear_property()
clear_property()
verbs()
verb_info()
set_verb_info()

verb_args()
set_verb_args()
add_verb()
delete_verb()
verb_code()
set_verb_code()
disassemble()
players()
is_player()
set_player_flag()
connected_players()
connected_seconds()
idle_seconds()
notify()
buffered_output_length()
read()
force_input()

170 Programming

flush_input()
output_delimiters()
boot_player()
connection_name()
set_connection_option()
connection_options()

connection_option()
open_network_connection()
listen()
unlisten()
listeners()

Operations Involving Times and Dates:

time()
ctime()

MOO-Code Evaluation and Task Manipulation:

raise()
call_function()
function_info()
eval()
set_task_perms()
caller_perms()
ticks_left()
seconds_left()

task_id()
suspend()
resume()
queue_info()
queued_tasks()
kill_task()
callers()
task_stack

Administrative Operations:

server_log()
renumber()
reset_max_object()
memory_usage()

dump_database()
db_disk_size()
shutdown()

$Utils

Some of the built-in functions are used frequently in everyday programming,
some are used rarely, or only by wizards, or both. The MOO also provides a
collection of utilities packages. Each utilities package has its own top-level help text,
and each verb has more detailed help text. This list is just the $utils packages
available in LambdaCore. A reference list of all the verbs on each is provided in
Appendix B.

$wiz_utils
$math_utils, $trig_utils
$set_utils
$seq_utils
$gender_utils
$time_utils
$match_utils
$object_utils

$lock_utils
$list_utils
$command_utils
$code_utils
$building_utils
$string_utils
$generic_utils
$quota_utils

Programming 171

$byte_quota_utils
$object_quota_utils

$matrix_utils
$convert_utils

