
101

Chapter 6 – Programming

A Brief Overview of What it Is and How it All Works

Building transcends the VR in that when you @create objects and @dig rooms
you are using the system as a computer system rather than acting strictly within the
bounds of the MOO’s frame story or virtual reality. Programming takes things one
step further, in that you create new and original ways for objects to behave. This
section presents an abstract overview of how that process works. The following
section, “Yib’s Pet Rock”, is a hands-on tutorial.

First Principles

I take on faith the mechanics of how text travels from your keyboard to the
MOO and from the MOO to your screen, and ask you to do so as well. At some later
time you may wish to investigate these for yourself, but they are beyond the scope of
this book.

The MOO is made of two principal parts, the server and the database .

The Server

The server is the program that runs on the MOO’s host machine. It accepts new
connections, interprets the commands you type, causes various things to happen in
the database because of what you type, and causes some text output to appear on your
screen. A command is precisely a line of text that you type with the intention of
getting a response from the MOO. This cycle, you typing a command, the server
executing it, and output (usually) displaying on your screen is referred to as a task, or,
more accurately, a foreground task.

The Database

The database is the entirety of all the objects on the MOO, including all their
properties and verbs. (The core database is the database that is there when a new MOO
first starts, before any new objects, properties, or verbs have been added.) A property is
a named piece of data associated with a particular object. Where do properties come
from? They are added to objects on an as-needed basis by programmers, using the
@property command. A verb is a named sequence of instructions that the server
carries out (or executes). On MOOs, the terms program , command, and verb are often
used interchangeably.

102 Programming

The Parser

A command consists of one or more words that you type, separated by spaces.
One of the things that the server does is analyze (parse) the line of text that you type,
and try to identify which verb on which object it should execute. The part of the
server that does this is called the parser. The first word of the command you type is
the name of the verb. The rest the words you type (if any) are called arguments,
which are items of information that the verb needs in order to work properly. Let’s
consider a few example commands and talk about their arguments:

take rabbit from hat
put hat on table
pet rabbit
page help I'm trying to understand parsing, can anyone
explain it to me?
home

For every command, the parser tries to identify an object with a verb of that
name on it that it can run, and it considers sets of objects and their associated verbs
in a particular sequence. This sequence is the player emself, any feature objects that
the player has, the room the player is in, the direct object of the command, and the
indirect object. Looking at these examples, you might intuitively figure out that if
there is a hat nearby, with a verb that lets one take things from it, that might be an
appropriate verb to run, and you would probably be right. Then, if there is a table
in the vicinity, and a verb that lets one put things on it, that might be an appropriate
choice, and so on. Some commands, like page and home don’t take direct objects,
prepositions, and indirect objects. They take other items of information instead, or
no information.

When a programmer creates a verb, e must specify what arguments (if any) the
verb uses. These are called argument specifiers . When the parser identifies an object
and a verb with argument specifiers that are appropriate to the command that was
typed in, we say that it matches the object or matches the verb on the object.

If the parser can’t identify an object with an appropriate verb to run, the server
sends the following text to your screen:

I don't understand that.

Tasks

As mentioned above, the cycle of your typing in a command, the parser
matching an object and a verb to run, and then output (usually) appearing on your
screen is called a foreground task. There are three basic kinds of things that any task
can do: It can send information (text) to be displayed on your screen. It can modify
the database in one or more ways, including changing the values of properties or
even creating new verbs to run in future tasks. And it can start up another task that
does something else, either later or at the same time, but independently. These tasks
are called background tasks. They can do the same three things that foreground tasks

Programming 103

do, including starting up additional background tasks. Every background task has a
unique numerical identification number called its task_id. A list of background
tasks (identified by task_id) that are scheduled to run at a later time is called a
queue.

How Are Properties and Verbs Created?

There are two commands that are fundamental to the programming process, and
these are @property and @verb. Like any other command, someone types them in
(with some arguments), the parser figures out which object is to receive the new
property or verb, and then the server runs the verb that causes new properties or
verbs to be added to an object.

The @property Command

The syntax for adding a new property to an object is:

@property <object>.<property name> <initial value>
[<permission flags> [<owner>]]

The property name can be anything you want except that it may not contain
any spaces. The initial value can be anything you want, but text should be enclosed
within double quotes (""). The permission flags can be any combination of the
letters “r”, “w”, and “c”. They govern who else may access those properties. (A flag is
a tiny bit of data, usually stored as a 1 or a 0 (often though not always signifying
“yes” or “no”) within a larger piece of data.) If you include the letter “r” in the
permission flags, then anyone may read the value of this property, and anyone’s verb
may access and use the value of this property. If you include the letter “w” in the
permission flags, then anyone may change the value of the property, and anyone’s
verb may change the value of the property. The “w” flag is hardly ever used; there are
safer ways to permit others to vary the value of a property in limited ways that you
control. The “c” flag controls who is allowed to change the value of the property in
the case that someone else makes a child of your object. If you include “c” in the
permission flags, then the owner of the child object can change it, and your verbs
can’t change it. If you don’t include “c” in the permission flags, then your verbs can
change the property’s value, even on child objects owned by others, but the owners
of the child objects can’t change the value of the property directly. This is a concept
that many people wrestle with, so don’t be discouraged if it doesn’t make sense right
away. It’s mentioned several times in the “Yib’s Pet Rock” tutorial (page 108), and
explained again in the programming reference section (page 156).

When a letter is included as a permission flag, we say that that flag is set . When
a letter is omitted from the permission flags, we say that that flag is clear. For
example, the “r” flag is usually set, and the “w” flag should almost always be clear.

104 Programming

The @verb Command

The syntax for adding a new verb to an object is:

@verb <object>:<verb name> <direct object specifier>
<preposition specifier> <indirect object specifier>
[<permission flags> [<owner>]]

The verb name can be anything you want except that it may not contain any
spaces and should not begin with the asterisk character (*). The argument specifiers
are three generalized expressions of the direct object, preposition, and indirect object
that are used by the parser when trying to match a verb to run. The direct object
specifier and indirect object specifier can be either this or none or any. The
preposition specifier may be either any, none, or one of the list of permissible values
(such as in or on) given in the Programmer’s Reference Manual and the
programming reference section (see page 163). The permission flags for a verb can be
any combination of the letters “r”, “x”, or “d”. If the “r” flag is set, then others may
read the verb. If the “x” flag is set, then other verbs may use this verb as an
intermediate step in their own execution. The “d” flag is obsolete but should always
be set; it used to govern whether an error, if one was encountered, should cause the
verb to cease executing immediately and produce a traceback or be ignored. A later
version of the server provided other ways to handle error conditions without causing
tracebacks; nevertheless, the programmer’s manual indicates that while obsolete, the
“d” flag should always be set17. A wizard can set the owner of the verb to be someone
other than emself.

Here’s an example of adding a new verb to an object:

@verb collage:paste any onto this rxd

 (Such a verb might be used to program a collage object so that you could paste
anything onto it to create a work of art.)

 ’Round and ’Round We Go…

After a verb is added to an object, a programmer then sets to programming it, i.e.
specifying, in terms the server can understand, just what it is that the verb is to do,
either with the @program command (explained in the programming tutorial, page
108) or using the verb editor (explained in the section on using the in-MOO editors).
Programming is an “iterative process”, which means that it usually takes several tries
before a verb works just the way it was originally intended to.

17 Pavel Curtis, The LambdaMOO Programmer’s Manual, section 2.2.3.

Programming 105

The Nitty-Gritty: What Goes On Inside All Those Verbs?

In a nutshell, verbs start up, process data, and then finish.

Starting Up

When you type a command, the first word of what you type is the name of a
verb, and you are said to be “invoking that verb from the command line”.
Sometimes these verbs are called command-line verbs . Other verbs, though, are only
meant to be invoked (or called) from within other verbs – they perform some
intermediate function and return a result, which the calling verb then uses as if the
function had been written into the calling verb itself. These verbs, called from other
verbs, are called subroutines. Regardless of whether a verb is a command-line verb or a
subroutine, all verbs do some initial start up processing when they are called or
invoked, and this consists of setting up some variables.

A variable is like a property in that it is a named piece of data. Unlike a property,
however, a variable only exists and has meaning while a verb is running. Also unlike
properties, variables aren’t stored with objects – so they can’t be accessed by other
players or other verbs. We say that they are “internal to the verb” or local, whereas
properties are “external to the verb” or global. In the MOO programming language,
variables are said to be dynamically allocated, which is a fancy way of saying that as
soon as a line of MOO-code assigns a value to a variable, voilà! that variable comes
into being and contains the value that the verb just assigned to it.

There are different kinds of values that variables can hold, and in the computer
world, “kinds of values” are referred to as data types. In some programming
languages, you have to specify at the beginning of a program what variables will be
used and what kind of data each will hold. A counter, for example, might be of type
integer, while a variable intended to hold a person’s name would be of type character
string. In the MOO programming language, you don’t have to declare in advance
what type of data a variable will hold, and a variable can hold different types of data
at different times. There is a way to ascertain what type of data a variable is holding
at any particular time, if one needs to know that.

When a verb is first invoked, certain variables are automatically created right
away, and are assigned values before anything else happens. These are called built-in
variables. The data these variables hold are always available for use within the body
of the verb itself. They include the object number of the player who typed the
command, the direct object (if any), the indirect object (if any), and a special variable
called args, which holds a list of any other pieces of information the verb or
subroutine needs to do its work – in other words, the arguments. For a command
line verb, the value of the variable args is a list of just those things the player typed –
the direct object, the preposition, and the indirect object, or the content of a paged
message, for example. Subroutines may need other pieces of information, however.
If a subroutine’s job is to take a list of numbers and sort them, for example, then it
needs to be told what numbers to sort, and that’s what would be in its args variable.

106 Programming

It is the job of the calling verb to send the right arguments to a subroutine so that the
subroutine can do its job correctly.

Processing Data – The Very Stuff

The basic things that verbs do are:

• Change (directly or indirectly) the values of properties on objects in the database.

• Send information to be displayed on someone’s screen (or several people’s
screens).

• Calculate intermediate results from given information and store them in
variables. (The “given information” is received by the verb in the built-in
variable args, which is sometimes also called the argument list.)

How is all this done? The server evaluates a sequence of expressions. An
expression is a combination of letters, numbers, punctuation marks and white space
which, when evaluated, generates a value. The value of an expression can then be
assigned to a variable, or stored in a property, or ignored. Why would a value be
ignored? Some expressions have side effects, which are actions that occur as a result of
evaluating the expression. An example of this would be displaying some text on a
player’s screen. If all you care about is an expression’s side effect(s), then you don’t
need to store or otherwise pay attention to its value, even though it has one.

The Finish

Calls to verbs are themselves expressions. When all the expressions within a
verb have been evaluated, then the verb is said to terminate. Any variables that the
verb used are removed from the computer’s memory, and a value, the final value of
the verb, is returned, either to the command line or to the verb that called it. If the
verb was called from the command line, its return value is ignored. If the verb was
called as a subroutine, then its return value may be ignored, or it may be used as a
component of a more complex expression.

In Conclusion

The substance of any programmer’s manual or programming language reference
is an enumeration of the kinds of expressions that are available, what each one does,
and (depending on how detailed the reference is) a synopsis of how to use them.
Looking at a programming reference can seem daunting, at first, but it isn’t an all-or-
nothing proposition. If you know a few simple kinds of expressions, then you can
write a few simple programs. If you know a wide variety of expressions, then you can
write a wide variety of programs, and everything in between. Virtuoso programmers
amass a knowledge of expressions and available subroutines the way master chefs

Programming 107

amass a knowledge of ingredients. Anyone who can read can cook, but the more you
know, the more you can do.

