M OO Programming Reference

This section is geared toward people who are at least somewhat comfortable with
programming. For the fine points | refer you to the programmer’s manual itself.
Here, | have tried to present an overview of the MOO programming language in a
format that is biased towards ease of reference rather than exhaustive explication. |
have provided brief explanations of some points where | think clarification might be

hel pful.

Data Types

Variables are not of fixed data type; they become the data type of the value

assigned to them. Uset ypeof (<vari abl e>) to see what you’ ve got.

I NT

Integer: 29, 0, -0, 5

FLOAT

Floating point number: 29.0, 0.0, 5.0

NUM

Historical, same as| NT. (FLOAT was alater addition.) FLOATs

and | NTs don’t mix and match. Use toint() or tofloat() to force
oneto be the other. Note that (1 == 1.0) evaluatesto false.

STR

A quoted string: " pi ckl es". To include the double quote mark
itself in a string, precede it with the backslash character:
"diver shouts, \"Yow \"" Strings are case-insensitive:
("carrot" == "CarROI") evaluatesto true. Use

equal ("carrot", "CarROT") if you need to differentiate
between the two.

An object, e.g: #1234. In conditional statements, an object by
itself evaluatesto false. Useval i d(<obj ect >) instead. Some
special objects:

e #-1 or $not hi ng. Not valid, but anything may be moved
there. The canonical invalid object.

e #-2 or $anbi guous_nat ch.
e #-3or$failed_match

* $garbage Thisobject and kids of it are valid but not useful.
They are all owned by the special system player Hacker.
When an object isrecycled, it becomes akid of $gar bage.

156 Programming

LI ST {1, 2.5, "a string", {"a", "sublist"}, #321,
E_RANGE, 2.5}

LI STs are designated with curly braces ({}), may nest to an
arbitrary number of levels, and their elements need not be of the
same datatype. Their elements are preserved in order and may
include duplicates (i.e. they are not like mathematical sets).

The @ operator yields the elements of the list as separate
elements. Another way to phrase thisisthat it isthe inverse of
putting curly braces around some elements. Two canonical uses.

<sone-list> = {@sone-list> <new elenent>}; Thisis
the usual way to add an element onto the end of alist. If ais
{1, 2, 3},andbis4,then{@, b} givesthefour-element list
{1, 2, 3, 4},whereas{a, b} would givethe two-element
list{{1, 2, 3}, 4}.

pass(@rgs); Thiscausestheidentically-named verb on the
current object’ s parent to be run with the same argument list. If
you just did pass(ar gs) , then the arguments to the verb being
called would have an extra set of braces around them, thus
making the argument list {{a, b, c}}, for example, instead of
{a, b, c}.

<el enment > in <some-|i st> will return the (1-based) index of
the first instance of <el enent > in<sone-1i st > if itis present,
0 otherwise. A typical usage might be:

if (itemlocation in {player,
pl ayer. | ocation})
<exprs>;
endi f

Programming 157

mailto:@
mailto:@<some-list>, <new_element>
mailto:@a, b
mailto:@args

ERR E_NONE

E DIV
E_PERM
E_PROPNF
E_VERBNF
E_VARNF
E_INVIND
E_RECMOVE
E_MAXREC
E_RANGE

E_ARGS
E_NACC

E_INVARG
E_QUOTA
E_FLOAT

try

no error

E _TYPEtype mismatch

division by zero

permission denied

property not found

verb not found

variable not found

invalid indirection

recursive move

too many verb calls (max recursion)

range error (subscript too large, or zero, or
negetive)

incorrect number of arguments

move refused by destination (i.e. object
not acceptable)

invalid argument
resource limit exceeded
floating-point arithmetic error

Errors can be raised (yielding atraceback) or caught (then
handled or ignored). The following two constructs are used to
trap errors and deal with them:

‘<exprl> ! ANY => <expr2>'

See section 4.1.12 of the programmer’s manual. The single
quotes are part of the expression, and are specifically back single
quote and forward single quote.

<exprs>;
except ANY

<al ternate exprs>;
endtry

See sections 4.2.7 and 4.2.8 of the programmer’ s manual.

Subscripting

Everything is 1-based.

Y ou can subscript lists or strings.

158 Programming

<list-or-string>[<exprl>..<expr2>] gives dlices (sub-list or sub-string).
<exprl> and <expr2> must be in range; <list-or-string>[$] is the last
element or character.
The following are well-formed:
<variable> = <list-or-string>[<expr>];
<variable> = <list-or-string>[<exprl..expr2>];
<list-or-string>[<exprl>] = <expr2>;
<some- | i st >[<expr 1>..<expr2>] = <expr3>;
<some- st ri ng>[<expr 1>..<expr2>] = <expr4>;

Note that in the above example, <expr 3> must evaluate to a list and <expr 4>
must evaluate to a string.

Accessing Properties and Verbs on Objects

$<sonet hi ng> isthe same as#0. <sonet hi ng>.
Y ou can use parentheses to access property names and verbs dynamically:

<obj ect >. (<cal cul at ed- pr opert y- nane>)
<obj ect >: (<cal cul at ed- ver b- nanme>)

Variables

Variables are local and dynamic, coming into existence when assigned a value.
For global variables, define and use a property.

In addition to the data types themselves (which evaluate to integers), the
following built-in variables are provided:

this The object on which the currently-running verb is defined.
pl ayer The object number of the player who typed in the command.
cal ler The objnum of the object on which the calling verb is defined, or
pl ayer, if the verb was called from the command line.
verb The name by which the currently-running verb was invoked.
Verbs may have aliases.
args Thelist of arguments with which a subroutine was called or, if a
command-line verb, with which the command was invoked.
argstr Everything that was typed in after the verb name on the command
line.
dobj The direct object as parsed from the command line.
dobj str The string from which dobj was matched.

Programming 159

prepstr The string that was parsed as the preposition.
i obj The indirect object as parsed from the command line.
i obj str The string from which iobj was matched.

Any of these may be reassigned within a verb and their values will persist into

the next verb call except that cal |l er will change to the current object, and a
changed value of pl ayer will not persist unless the verb’s owner is awizard.

Scattering Assignment

Several variables may be assigned values in asingle line, and this is often done to
assign incoming arguments to named variables. A typical example might be:

{who, what, ?where = player.|ocation, ?when=tinme()} = args;
See section 4.1.9 of the programmer’ s manual for a detailed explanation.

Operators

The following operators apply, in order of precedence:

I not

- arithmetic negation (without aleft operand)

A exponentiation

* multiplication

/ division

% modulo

+ addition (note, + also concatenates two strings)

- subtraction

== is equal to (note, easy to confuse with the assignment operator —
nasty!)

| = is not equal to

< less than

<= less than or equal to (note, =< doesn’t work)

S greater than

S= greater than or equal to (note, => doesn’t work)

in element position in alist

&& logical “and”

160 Programming

[logical “or”
L? the conditional operator.
<expr1l> ? <expr2> | <expr3>

is equivalent to:
if (<exprl)
<expr 2>;
el se
<expr 3>;
endi f

= assignment (note, easy to confuse with atest for equality — nasty!)

Assignments may appear within expressions. Use parentheses liberally to avoid
mistakes and confusion.

Truth Values

0, -0, 0.0, -0.0, "", {}, errors, and objects all evaluate to false. Anything
else evaluates to true.

Compound Statements

Use a semicolon after expressions within the body of a compound statement, but
not after lines of the compound statement itself, thus:
if (<expril>)
"This is a coment.";
<expr2>;
<expr 3>;
el sei f (<expr4>)
<nor e- expr s>;
el sei f (<expr5>)
<sonet hing el se entirel y>;
el se
"None of the above.";
<fi nal - exprs>;
endi f

Programming 161

L ooping

for <variable> in (<sone-Ilist>)
<exprs>;
endf or

for <index> in [<intl>. .<int2>]
<exprs>;
endf or

whi I e (<condition>)

<exprs>;
endwhi | e
br eak;

br eak <nane>;
conti nue;

conti nue <nanme>;

(See section 4.2.5 of the programmer’s manual for the fine points of br eak and
conti nue.)

Background Tasks

fork (<del ay-in-seconds>)
<exprs>;
endf or k

fork <variabl e> (<del ay-i n-seconds>)
<exprs>;
endf or k

. In the second example, <vari abl e> receives the number (task_id) of the forked
task.

Time M anagement

A task is the execution of a command from start to finish, or the execution of the

statements within a fork/ endf ork statement from start to finish. Tasks are
identified with numbers, and are allotted a fixed number of ticks and a fixed number

of seconds for execution. The LambdaCore default is 30,000 ticks for a foreground

162 Programming

task and 15,000 ticks for a background task. Properties to override these numbers
may be added to the object $ser ver _opti ons by awizard and inspected (if present)
by programmers.

If atask runs out of ticks, it is unceremoniously terminated by the system. If a
task is in danger of running out of ticks, a programmer may get a new allotment by

suspending the task briefly (note, suspend ($l ogin. current_| ag) is considered
polite). When atask suspends, it obtains an additional allotment of ticks, so it is not

uncommon to find or place asuspend() statement either right before or inside of a
loop.

The utility verb $command_ut i | s: suspend_i f _needed() might suggest itself,
but in fact it uses up a fair number of ticks, itself. Current fashion is to use a line of
the form:

((ticks_left() < 3000) && suspend($login.current_lag));
See also sections 4.4 and 5.2.8 of the programmer’s manual .

Argument Specifiers

When defining a verb on an objhect (with the @erb command), you must
provide specifiers for the arguments with which the verb will be invoked.

The allowable specifiers are:

» direct object specifiers
this
any
none

* prepositions

none
any

wi t h/ usi ng
at/to

in front of

in/inside/into

on/ ont o/ upon/ on top of
fromfrominsi de/ out of
over

t hr ough

under / under neat h/ beneat h
behi nd

besi de

f or/ about

is

Programming 163

as
of / of f of

* indirect object specifiers
this
any
none

Definite and indefinite articles are omitted. When deciding which argument
specifiers to use, it is helpful to imagine what a user would actually type when
invoking the command, then generalize from that. When writing subroutines that
aren’t intended to be invoked from the command line, specify the arguments as
“this none this”.

Eval

The eval command evaluates a string as MOOcode. Like say andenot e, it can
be abbreviated to a single character command, ;. A second form, ;; evaluates a
sequence of expressions, each terminated by a semicolon (as in a verb). Compound
statements don’'t end in a semicolon. The form using two semicolons prints out O as
iLs valtée; if you want to see results you should include acall to pl ayer:tell(); at
the end:

;; "Count players who have nore than ten aliases”; total = 0;
for dude in (players()) if (length(dude.aliases) > 10) total
= total + 1; endif endfor player:tell("Total: " +

tostr(total));

A second form of eval , “#” matches an object by name if it's in your vicinity,
and is useful for looking at properties or just quickly finding out the object number of
something close by. Property names can be chained:

#rock

#rock. noss_|i st

#yib p

#yi b.aliases p

#yi b. | ocati on. owner. nane p

The last form, terminated by “ p” matches the name of a player even if you're

not in eir vicinity, so that you don’t have to know eir number to look at a (readable)
property on em. “#” can also be used with object numbers directly:

#58337. 1 ocati on. contents

Use @et env to set up some commonly-used variable settings in advance:
@etenv me = player; here = player.location;

Inspect the result with
#ne. eval _env

164 Programming

Seealsohel p eval and hel p #.

Owner ship and Per missions

Every object has an owner. Every property on every object has an owner, but it
doesn’'t have to be the same as the owner of the object. Every verb on every object
has an owner, but it doesn’t have to be the same as the owner of the object.

Task permissions are expressed as an object number, that of the player who owns
the verb currently being executed.

The function cal | er _perms() returns the task permissions of the calling verb,

Ic_)r #- 1 (an invalid object) if the currently running verb was called from the command
ine.

Inherited verbs always have the same owner as the owner of the corresponding
verb on the parent or ancestor object. They run with that owner’'s permissions,
except that wizard-owned verbs can set the task permissions to another (usually non-
wizardly) player.

To+c Or To—c, That IsThe Question

Ownership of an inherited property depends on whether the property was
initially defined as+c or -c. If it was defined as +c (think “may be changed by the
owner of the child/descendent object”), then the property is owned by the owner of
the child/descendent object. If the property was initially defined as - ¢ then the
property on all children and descendents is owned by the player who defined the
property on the parent/ancestor object, and its value can be changed by verbs running
with that player’'s permissions. This becomes relevant when one is making a generic
object. If the owner of a child or descendent object will need to @et or otherwise
change the property, then define it as +¢c. This is typically done for messages, and
also for other parameters, for example the number of times one must turn the crank
before the jack in the box pops out. If, on the other hand, one of the verbs you write
on the generic will need to change the value of a property, then it should be defined
as -c so that the property on all descendent objects will still be owned by you. Then
your verbs, running with your permissions, can change it (for example, the number
of times the crank on the jack in the box has been turned so far).

When you make an object strictly for your own use, it really doesn’t matter
whether the properties are +c or - c. It becomes an issue when other people make
kids of your object. Then if a property that one of your verbs needs and tries to
change is mistakenly +c, the verb will encounter a permissions error. If you @hnod

the property to - ¢, then all new kids of the object will have that property owned by
you, but it isn’t changed retroactively for existing kids. If you make a property +c and

find out later that it should have been -c, you can change it on all descendents by
evaluating the following:

Programming 165

;$wi z_utils:set_property_flags(<object>, <property_nane>,
<property_flags>)

You don’'t have to be a wizard to use this verb — just the owner of the object.
Her€e' s an illustration, supposing that a generic conker is object #1234
;9w z_utils:set_property flags(#1234, "thwaps", "r")
This would have the effect of making the. t hwaps property on all descendents

of the generic conker readable but neither writable nor changeable (by owners of kid
objects), and the property would be owned by the author of the generic conker in all

cases (and could be changed by that player’ s verb(s)).

Hidden Treasures

Some verbs are called automatically, seemingly invisibly. Here are some of them:

<obj ect >: | ook_sel f Called when you look at <obj ect >
<obj ect >: descri ption Called (if it exists) by : | ook _sel f
<obj ect>:tel |l _contents | Called (if it exists) by : | ook_sel f

<obj ect >: ent erfunc Called when something is moved to <obj ect >
<obj ect >: exi tfunc Called when something is removed from

<obj ect>'s. cont ents.
<r oon®: conf unc Called when someone connects inside a room.
<r oon®: di sfunc Called when someone disconnects inside a room.
<pl ayer >: conf unc Called when a player connects
<pl ayer>: di sfunc Called when a player disconnects
<object>:initialize Called when an object is created. Use, for

exampleto initialize parameters on the kid of a
generic object.

<obj ect>:recycl e Called right before an object is recycled.
<pl ayer - or - r oon®: huh Called if the parser can’t find an object with the
appropriate verbspec. Thisis how exitsin rooms

are invoked without the exit objects’ having to be
in rooms, for example.

166 Programming

A Couple“Tricksof the Trade”

Sending mail messages from within a verb: The relevant verb is
$mai | _agent: send_nessage. Personally, | always find the help text hard to read,
so | am providing thisillustrative example, which | hope may be helpful:

; $mai | _agent : send_nessage(ne, {ne},
"This is the subject heading", {"Linel", "Line2", "",
"Oooga boooga! "})

Creating objects on the fly is fun, and possible if you are not over quota. Hereis
an example of how it’s done.

@erb ne:test none none none rd

@pr ogram me: t est
"Sanpl e verb to denonstrate creating an object on the fly.";
thingl = “$recycler: _create($thing) ! ANY =>

$not hi ng' ;
if (valid(thingl))

t hi ngl: set _name("t hingl");

t hi ngl: novet o(pl ayer. | ocation);

"If you create a lot of things, then you need to neasure
them as you go to avoid a 'resource linmt exceeded error.";

$quot a_util s: obj ect _bytes(thingl);

pl ayer:tell ("You now have sonething that you didn't have
before!");
el se

pl ayer:tell(

"Couldn't create thingl. Don't know why.");

endi f

t est

To recycle an object (that you own) from within averb:
$recycler: _recycl e(<obj ect>);

Programming Featur e Objects

Thisisavery brief summary of the steps involved in creating a feature object. It
isn't a tutorial on programming in general, but highlights a couple of quirks
associated with programming this particular kind of object.

First, create akid of the generic feature object:
@reate $feature naned <your-FO nanme>
Then describeit.

Programming 167

Then program some verbs on it. Note that the verbs have to have the “x”
permission flag set, so that they can be called from other verbs.

Then add help text. This can be done in either of two different ways. Thefirst is

to edit your feature object’s . hel p_nsg property. You should present each of the
verbs on your FO that are intended for public use (as opposed to internal
subroutines), give the syntax for the verb’ s usage, and a brief explanation of what the
verb does. The other way is to put the documentation for each verb intended for
public use as a set of comments at the top of the verb. The second is the officially

preferred method (as per hel p $f eat ur e), but both will work.

THEN: In either case you must edit your FO’s. f eat ur e_ver bs property. If you
put all the documentation in the help_msg property, then type:

; <your - FO>: set _feature_verbs({})

If you put the documentation for each public-use verb at the top of each verb,
then type:

; <your - FO>: set _feature_verbs({"<verbl>", "<verb2>",
"<l ast-verb>"})

If you wish to restrict who may add your feature object, write a custom

: feature_ok verbonit. Thisverb should return O if for whatever reason the person
may not add the feature, or a truth value otherwise. An example of when this might

come in handy might be afeature only for use by wizards.
Seedsohel p features andhel p $f eature.

Built-In Functions

See the online help text or the programmer’s manual for the specifics of each
individual function — here’swhat’ s there:

The quintessential object-oriented function:

pass()

General operations applicable to all values:

typeof () t oobj ()
tostr() tof | oat ()
toliteral () equal ()
toint() val ue_bytes()
t onum() val ue_hash()

Operations on Numbers:

r_andom() max()
m n() abs()

168 Programming

floatstr()
sqgrt()
sin()
cos()
tan()
asin()
acos()
atan()
si nh()

Operations on Strings:

I engt h()
strsub()

i ndex()

ri ndex()
strenmp()
decode_bi nary()
encode_bi nary()

Operations on Lists:

[engt h()

i s_menber ()
listinsert()
listappend()

Manipulating Objects:
chparent ()

val i d()
par ent ()
children()

obj ect _bytes()
max_obj ect ()

nove()

properties()
property info()

set _property_info()
add_property()

del et e_property()
is_clear_property()
cl ear _property()
ver bs()

verb_info()

set _verb_info()

cosh()
tanh()
exp()
log()

| 0g10()
ceil ()
floor()
trunc()

mat ch()

rmat ch()
substitute()
crypt()
string_hash()
bi nary_hash()

listdelete()
listset()
set add()
setrenove()

verb_args()

set _verb_args()
add_verb()

del ete_verhb()
verb_code()

set _verb_code()

di sassenbl e()

pl ayers()
is_player()

set _player flag()
connect ed_pl ayers()
connect ed_seconds()
i dl e_seconds()
notify()

buf f ered_out put _| engt h()
read()
force_input()

Programming 169

flush_input () connecti on_option()

out put _delimters() open_net wor k_connecti on()
boot pl ayer () listen()
connection_name() unlisten()

set _connection_option() |'isteners()

connection_options()

Operations Involving Times and Dates:
time()

ctime()

MOO-Code Evaluation and Task Manipulation:

rai se() task_id()

call _function() suspend()
function_info() resune()

eval () queue_i nfo()
set _task_perns() queued_t asks()
cal l er _perns() kill _task()
ticks left() callers()
seconds_| eft () task_stack

Administrative Operations:

server _l og() dunp_dat abase()
r enunber () db_di sk_si ze()
reset _max_obj ect () shut down()

menory_usage()

$ULtils

Some of the built-in functions are used frequently in everyday programming,
some are used rarely, or only by wizards, or both. The MOOQO also provides a
collection of utilities packages. Each utilities package has its own top-level help text,
and each verb has more detailed help text. This list is just the $utils packages
available in LambdaCore. A reference list of all the verbs on each is provided in
Appendix B.

$wiz_utils $lock_utils
$math_utils, $trig utils $list utils
$set _utils $conmmand_utils
$seq_utils $code_utils
$gender _utils $bui I ding_utils
$time_utils $string_utils
$match_utils $generic_utils
$obj ect _utils $quota_utils

170 Programming

$byte quota utils $matrix_utils
$obj ect _quota_utils $convert _utils

Programming 171

