
156 Programming

MOO Programming Reference

This section is geared toward people who are at least somewhat comfortable with
programming. For the fine points I refer you to the programmer’s manual itself.
Here, I have tried to present an overview of the MOO programming language in a
format that is biased towards ease of reference rather than exhaustive explication. I
have provided brief explanations of some points where I think clarification might be
helpful.

Data Types

Variables are not of fixed data type; they become the data type of the value
assigned to them. Use typeof(<variable>) to see what you’ve got.

INT Integer: 29, 0, -0, 5

FLOAT Floating point number: 29.0, 0.0, 5.0

NUM Historical, same as INT. (FLOAT was a later addition.) FLOATs
and INTs don’t mix and match. Use toint() or tofloat() to force
one to be the other. Note that (1 == 1.0) evaluates to false.

STR A quoted string: "pickles". To include the double quote mark
itself in a string, precede it with the backslash character:
"Oliver shouts, \"Yow!\"" Strings are case-insensitive:
("carrot" == "CarROT") evaluates to true. Use
equal("carrot", "CarROT") if you need to differentiate
between the two.

OBJ An object, e.g: #1234. In conditional statements, an object by
itself evaluates to false. Use valid(<object>) instead. Some
special objects:

• #-1 or $nothing. Not valid, but anything may be moved
there. The canonical invalid object.

• #-2 or $ambiguous_match.

• #-3 or $failed_match

• $garbage This object and kids of it are valid but not useful.
They are all owned by the special system player Hacker.
When an object is recycled, it becomes a kid of $garbage.

Programming 157

LIST {1, 2.5, "a string", {"a", "sublist"}, #321,
E_RANGE, 2.5}

LISTs are designated with curly braces ({}), may nest to an
arbitrary number of levels, and their elements need not be of the
same data type. Their elements are preserved in order and may
include duplicates (i.e. they are not like mathematical sets).

The @ operator yields the elements of the list as separate
elements. Another way to phrase this is that it is the inverse of
putting curly braces around some elements. Two canonical uses:

<some-list> = {@<some-list>, <new_element>}; This is
the usual way to add an element onto the end of a list. If a is
{1, 2, 3}, and b is 4, then {@a, b} gives the four-element list
{1, 2, 3, 4}, whereas {a, b} would give the two-element
list {{1, 2, 3}, 4}.

pass(@args); This causes the identically-named verb on the
current object’s parent to be run with the same argument list. If
you just did pass(args), then the arguments to the verb being
called would have an extra set of braces around them, thus
making the argument list {{a, b, c}}, for example, instead of
{a, b, c}.

<element> in <some-list> will return the (1-based) index of
the first instance of <element> in <some-list> if it is present,
0 otherwise. A typical usage might be:

if (item.location in {player,
 player.location})
 <exprs>;
endif

mailto:@
mailto:@<some-list>, <new_element>
mailto:@a, b
mailto:@args

158 Programming

ERR E_NONE no error

E_TYPEtype mismatch

E_DIV division by zero

E_PERM permission denied

E_PROPNF property not found

E_VERBNF verb not found

E_VARNF variable not found

E_INVIND invalid indirection

E_RECMOVE recursive move

E_MAXREC too many verb calls (max recursion)

E_RANGE range error (subscript too large, or zero, or
negative)

E_ARGS incorrect number of arguments

E_NACC move refused by destination (i.e. object
not acceptable)

E_INVARG invalid argument

E_QUOTA resource limit exceeded

E_FLOAT floating-point arithmetic error

Errors can be raised (yielding a traceback) or caught (then
handled or ignored). The following two constructs are used to
trap errors and deal with them:

`<expr1> ! ANY => <expr2>'

See section 4.1.12 of the programmer’s manual. The single
quotes are part of the expression, and are specifically back single
quote and forward single quote.

try
 <exprs>;
except ANY
 <alternate exprs>;
endtry

See sections 4.2.7 and 4.2.8 of the programmer’s manual.

Subscripting

Everything is 1-based.

You can subscript lists or strings.

Programming 159

<list-or-string>[<expr1>..<expr2>] gives slices (sub-list or sub-string).
<expr1> and <expr2> must be in range; <list-or-string>[$] is the last
element or character.

The following are well-formed:

<variable> = <list-or-string>[<expr>];
<variable> = <list-or-string>[<expr1..expr2>];
<list-or-string>[<expr1>] = <expr2>;
<some-list>[<expr1>..<expr2>] = <expr3>;
<some-string>[<expr1>..<expr2>] = <expr4>;

Note that in the above example, <expr3> must evaluate to a list and <expr4>
must evaluate to a string.

Accessing Properties and Verbs on Objects

$<something> is the same as #0.<something>.

You can use parentheses to access property names and verbs dynamically:

<object>.(<calculated-property-name>)
<object>:(<calculated-verb-name>)

Variables

Variables are local and dynamic, coming into existence when assigned a value.
For global variables, define and use a property.

In addition to the data types themselves (which evaluate to integers), the
following built-in variables are provided:

this The object on which the currently-running verb is defined.

player The object number of the player who typed in the command.

caller The objnum of the object on which the calling verb is defined, or
player, if the verb was called from the command line.

verb The name by which the currently-running verb was invoked.
Verbs may have aliases.

args The list of arguments with which a subroutine was called or, if a
command-line verb, with which the command was invoked.

argstr Everything that was typed in after the verb name on the command
line.

dobj The direct object as parsed from the command line.

dobjstr The string from which dobj was matched.

160 Programming

prepstr The string that was parsed as the preposition.

iobj The indirect object as parsed from the command line.

iobjstr The string from which iobj was matched.

Any of these may be reassigned within a verb and their values will persist into
the next verb call except that caller will change to the current object, and a
changed value of player will not persist unless the verb’s owner is a wizard.

Scattering Assignment

Several variables may be assigned values in a single line, and this is often done to
assign incoming arguments to named variables. A typical example might be:

{who, what, ?where = player.location, ?when=time()} = args;

See section 4.1.9 of the programmer’s manual for a detailed explanation.

Operators

The following operators apply, in order of precedence:

!

-

not

arithmetic negation (without a left operand)

^ exponentiation

*

/

%

multiplication

division

modulo

+

-

addition (note, + also concatenates two strings)

subtraction

==

!=

<

<=

>

>=

in

is equal to (note, easy to confuse with the assignment operator –
nasty!)

is not equal to

less than

less than or equal to (note, =< doesn’t work)

greater than

greater than or equal to (note, => doesn’t work)

element position in a list

&& logical “and”

Programming 161

|| logical “or”

… ? … | … the conditional operator.

<expr1> ? <expr2> | <expr3>

is equivalent to:

if (<expr1)
 <expr2>;
else
 <expr3>;
endif

= assignment (note, easy to confuse with a test for equality – nasty!)

Assignments may appear within expressions. Use parentheses liberally to avoid
mistakes and confusion.

Truth Values

0, -0, 0.0, -0.0, "", {}, errors, and objects all evaluate to false. Anything
else evaluates to true.

Compound Statements

Use a semicolon after expressions within the body of a compound statement, but
not after lines of the compound statement itself, thus:

if (<expr1>)
 "This is a comment.";
 <expr2>;
 <expr3>;
elseif (<expr4>)
 <more-exprs>;
elseif (<expr5>)
 <something else entirely>;
else
 "None of the above.";
 <final-exprs>;
endif

162 Programming

Looping

for <variable> in (<some-list>)
 <exprs>;
endfor

for <index> in [<int1>..<int2>]
 <exprs>;
endfor

while (<condition>)
 <exprs>;
endwhile

break;

break <name>;

continue;

continue <name>;

(See section 4.2.5 of the programmer’s manual for the fine points of break and
continue.)

Background Tasks

fork (<delay-in-seconds>)
 <exprs>;
endfork

fork <variable> (<delay-in-seconds>)
 <exprs>;
endfork

In the second example, <variable> receives the number (task_id) of the forked
task.

Time Management

A task is the execution of a command from start to finish, or the execution of the
statements within a fork/endfork statement from start to finish. Tasks are
identified with numbers, and are allotted a fixed number of ticks and a fixed number
of seconds for execution. The LambdaCore default is 30,000 ticks for a foreground

Programming 163

task and 15,000 ticks for a background task. Properties to override these numbers
may be added to the object $server_options by a wizard and inspected (if present)
by programmers.

If a task runs out of ticks, it is unceremoniously terminated by the system. If a
task is in danger of running out of ticks, a programmer may get a new allotment by
suspending the task briefly (note, suspend ($login.current_lag) is considered
polite). When a task suspends, it obtains an additional allotment of ticks, so it is not
uncommon to find or place a suspend() statement either right before or inside of a
loop.

The utility verb $command_utils:suspend_if_needed() might suggest itself,
but in fact it uses up a fair number of ticks, itself. Current fashion is to use a line of
the form:

((ticks_left() < 3000) && suspend($login.current_lag));

See also sections 4.4 and 5.2.8 of the programmer’s manual.

Argument Specifiers

When defining a verb on an object (with the @verb command), you must
provide specifiers for the arguments with which the verb will be invoked.

The allowable specifiers are:

• direct object specifiers

this
any
none

• prepositions

none
any
with/using
at/to
in front of
in/inside/into
on/onto/upon/on top of
from/from inside/out of
over
through
under/underneath/beneath
behind
beside
for/about
is

164 Programming

as
of/off of

• indirect object specifiers

this
any
none

Definite and indefinite articles are omitted. When deciding which argument
specifiers to use, it is helpful to imagine what a user would actually type when
invoking the command, then generalize from that. When writing subroutines that
aren’t intended to be invoked from the command line, specify the arguments as
“this none this”.

Eval

The eval command evaluates a string as MOOcode. Like say and emote, it can
be abbreviated to a single character command, ;. A second form, ;; evaluates a
sequence of expressions, each terminated by a semicolon (as in a verb). Compound
statements don’t end in a semicolon. The form using two semicolons prints out 0 as
its value; if you want to see results you should include a call to player:tell(); at
the end:

;;"Count players who have more than ten aliases"; total = 0;
for dude in (players()) if (length(dude.aliases) > 10) total
= total + 1; endif endfor player:tell("Total: " +
tostr(total));

A second form of eval, “#” matches an object by name if it’s in your vicinity,
and is useful for looking at properties or just quickly finding out the object number of
something close by. Property names can be chained:

#rock
#rock.moss_list
#yib p
#yib.aliases p
#yib.location.owner.name p

The last form, terminated by “ p” matches the name of a player even if you’re
not in eir vicinity, so that you don’t have to know eir number to look at a (readable)
property on em. “#” can also be used with object numbers directly:

#58337.location.contents

Use @setenv to set up some commonly-used variable settings in advance:

@setenv me = player; here = player.location;

Inspect the result with

#me.eval_env

Programming 165

See also help eval and help #.

Ownership and Permissions

Every object has an owner. Every property on every object has an owner, but it
doesn’t have to be the same as the owner of the object. Every verb on every object
has an owner, but it doesn’t have to be the same as the owner of the object.

Task permissions are expressed as an object number, that of the player who owns
the verb currently being executed.

The function caller_perms() returns the task permissions of the calling verb,
or #-1 (an invalid object) if the currently running verb was called from the command
line.

Inherited verbs always have the same owner as the owner of the corresponding
verb on the parent or ancestor object. They run with that owner’s permissions,
except that wizard-owned verbs can set the task permissions to another (usually non-
wizardly) player.

To +c Or To –c, That Is The Question

Ownership of an inherited property depends on whether the property was
initially defined as +c or -c. If it was defined as +c (think “may be c hanged by the
owner of the child/descendent object”), then the property is owned by the owner of
the child/descendent object. If the property was initially defined as -c then the
property on all children and descendents is owned by the player who defined the
property on the parent/ancestor object, and its value can be changed by verbs running
with that player’s permissions. This becomes relevant when one is making a generic
object. If the owner of a child or descendent object will need to @set or otherwise
change the property, then define it as +c. This is typically done for messages, and
also for other parameters, for example the number of times one must turn the crank
before the jack in the box pops out. If, on the other hand, one of the verbs you write
on the generic will need to change the value of a property, then it should be defined
as -c so that the property on all descendent objects will still be owned by you. Then
your verbs, running with your permissions, can change it (for example, the number
of times the crank on the jack in the box has been turned so far).

When you make an object strictly for your own use, it really doesn’t matter
whether the properties are +c or -c. It becomes an issue when other people make
kids of your object. Then if a property that one of your verbs needs and tries to
change is mistakenly +c, the verb will encounter a permissions error. If you @chmod
the property to -c, then all new kids of the object will have that property owned by
you, but it isn’t changed retroactively for existing kids. If you make a property +c and
find out later that it should have been -c, you can change it on all descendents by
evaluating the following:

166 Programming

;$wiz_utils:set_property_flags(<object>, <property_name>,
<property_flags>)

You don’t have to be a wizard to use this verb – just the owner of the object.
Here’s an illustration, supposing that a generic conker is object #1234:

;$wiz_utils:set_property_flags(#1234, "thwaps", "r")

This would have the effect of making the .thwaps property on all descendents
of the generic conker readable but neither writable nor changeable (by owners of kid
objects), and the property would be owned by the author of the generic conker in all
cases (and could be changed by that player’s verb(s)).

Hidden Treasures

Some verbs are called automatically, seemingly invisibly. Here are some of them:

<object>:look_self Called when you look at <object>

<object>:description Called (if it exists) by :look_self

<object>:tell_contents Called (if it exists) by :look_self

<object>:enterfunc Called when something is moved to <object>

<object>:exitfunc Called when something is removed from
<object>’s .contents.

<room>:confunc Called when someone connects inside a room.

<room>:disfunc Called when someone disconnects inside a room.

<player>:confunc Called when a player connects

<player>:disfunc Called when a player disconnects

<object>:initialize Called when an object is created. Use, for
example to initialize parameters on the kid of a
generic object.

<object>:recycle Called right before an object is recycled.

<player-or-room>:huh Called if the parser can’t find an object with the
appropriate verbspec. This is how exits in rooms
are invoked without the exit objects’ having to be
in rooms, for example.

Programming 167

A Couple “Tricks of the Trade”

Sending mail messages from within a verb: The relevant verb is
$mail_agent:send_message. Personally, I always find the help text hard to read,
so I am providing this illustrative example, which I hope may be helpful:

;$mail_agent:send_message(me, {me},
 "This is the subject heading", {"Line1", "Line2", "",
 "Oooga boooga!"})

Creating objects on the fly is fun, and possible if you are not over quota. Here is
an example of how it’s done.

@verb me:test none none none rd

@program me:test
"Sample verb to demonstrate creating an object on the fly.";
thing1 = `$recycler:_create($thing) ! ANY =>
 $nothing';
if (valid(thing1))
 thing1:set_name("thing1");
 thing1:moveto(player.location);
 "If you create a lot of things, then you need to measure
them as you go to avoid a 'resource limit exceeded' error.";
 $quota_utils:object_bytes(thing1);
 player:tell("You now have something that you didn't have
before!");
else
 player:tell(
 "Couldn't create thing1. Don't know why.");
endif
.

test

To recycle an object (that you own) from within a verb:

$recycler:_recycle(<object>);

Programming Feature Objects

This is a very brief summary of the steps involved in creating a feature object. It
isn’t a tutorial on programming in general, but highlights a couple of quirks
associated with programming this particular kind of object.

First, create a kid of the generic feature object:

@create $feature named <your-FO-name>

Then describe it.

168 Programming

Then program some verbs on it. Note that the verbs have to have the “x”
permission flag set, so that they can be called from other verbs.

Then add help text. This can be done in either of two different ways. The first is
to edit your feature object’s .help_msg property. You should present each of the
verbs on your FO that are intended for public use (as opposed to internal
subroutines), give the syntax for the verb’s usage, and a brief explanation of what the
verb does. The other way is to put the documentation for each verb intended for
public use as a set of comments at the top of the verb. The second is the officially
preferred method (as per help $feature), but both will work.

THEN: In either case you must edit your FO’s .feature_verbs property. If you
put all the documentation in the help_msg property, then type:

;<your-FO>:set_feature_verbs({})

If you put the documentation for each public-use verb at the top of each verb,
then type:

;<your-FO>:set_feature_verbs({"<verb1>", "<verb2>", ... ,
"<last-verb>"})

If you wish to restrict who may add your feature object, write a custom
:feature_ok verb on it. This verb should return 0 if for whatever reason the person
may not add the feature, or a truth value otherwise. An example of when this might
come in handy might be a feature only for use by wizards.

See also help features and help $feature.

Built-In Functions

See the online help text or the programmer’s manual for the specifics of each
individual function – here’s what’s there:

The quintessential object-oriented function:

pass()

General operations applicable to all values:

typeof()
tostr()
toliteral()
toint()
tonum()

toobj()
tofloat()
equal()
value_bytes()
value_hash()

Operations on Numbers:

random()
min()

max()
abs()

Programming 169

floatstr()
sqrt()
sin()
cos()
tan()
asin()
acos()
atan()
sinh()

cosh()
tanh()
exp()
log()
log10()
ceil()
floor()
trunc()

Operations on Strings:

length()
strsub()
index()
rindex()
strcmp()
decode_binary()
encode_binary()

match()
rmatch()
substitute()
crypt()
string_hash()
binary_hash()

Operations on Lists:

length()
is_member()
listinsert()
listappend()

listdelete()
listset()
setadd()
setremove()

Manipulating Objects:

chparent()
valid()
parent()
children()
object_bytes()
max_object()
move()
properties()
property_info()
set_property_info()
add_property()
delete_property()
is_clear_property()
clear_property()
verbs()
verb_info()
set_verb_info()

verb_args()
set_verb_args()
add_verb()
delete_verb()
verb_code()
set_verb_code()
disassemble()
players()
is_player()
set_player_flag()
connected_players()
connected_seconds()
idle_seconds()
notify()
buffered_output_length()
read()
force_input()

170 Programming

flush_input()
output_delimiters()
boot_player()
connection_name()
set_connection_option()
connection_options()

connection_option()
open_network_connection()
listen()
unlisten()
listeners()

Operations Involving Times and Dates:

time()
ctime()

MOO-Code Evaluation and Task Manipulation:

raise()
call_function()
function_info()
eval()
set_task_perms()
caller_perms()
ticks_left()
seconds_left()

task_id()
suspend()
resume()
queue_info()
queued_tasks()
kill_task()
callers()
task_stack

Administrative Operations:

server_log()
renumber()
reset_max_object()
memory_usage()

dump_database()
db_disk_size()
shutdown()

$Utils

Some of the built-in functions are used frequently in everyday programming,
some are used rarely, or only by wizards, or both. The MOO also provides a
collection of utilities packages. Each utilities package has its own top-level help text,
and each verb has more detailed help text. This list is just the $utils packages
available in LambdaCore. A reference list of all the verbs on each is provided in
Appendix B.

$wiz_utils
$math_utils, $trig_utils
$set_utils
$seq_utils
$gender_utils
$time_utils
$match_utils
$object_utils

$lock_utils
$list_utils
$command_utils
$code_utils
$building_utils
$string_utils
$generic_utils
$quota_utils

Programming 171

$byte_quota_utils
$object_quota_utils

$matrix_utils
$convert_utils

