
243

Glossary of Terms

@ – By convention, the first character of a command that transcends the MOO’s
virtual reality. One of many descriptions of a MOO is “a text-based virtual reality”.
MOOs have themes, or general motifs, such as “a large mansion and its grounds”.
Within this text-based virtual reality, players can talk with one another, gesture
(emote), move from room to room, pick up and drop various objects, and so on.
These are sometimes referred to as VR actions . There are also several commands that
one can issue that break with or transcend the virtual reality: @who lists all the
players who are logged on, for example, and @join moves you to someone else’s
location on the MOO. I call these commands meta-VR.

– Every object on a MOO has a unique number, which is indicated by the “#” sign.
There is much you can do without paying attention to object numbers, but an object
can always be referred to by its number. If you are not holding an object or in the
same room with it, then (with a few exceptions) you must refer to it by number for
the system to figure out which object you mean.

ARB – The Architecture Review Board. In December, 1991 the LambdaMOO wizards
created the Architecture Review Board to assist them in assessing who should receive
more quota to build with. In July, 1993, a ballot passed that made the ARB an elected
body.

alias – Every valid object in the MOO has a name. Objects may have additional
aliases, which are other names (often shorter) that can also be used to refer to an
object. An object named “a big, black, hairy spider” might have the alias
“spider”, for example. One way to see an object’s aliases is to examine it. You can
add an alias with the @addalias command; you can remove one with the @rmalias
command. See also help @rename.

arguments – arguments are pieces of information that are provided to a command,
program, verb or subroutine so that it can do its job. If you look at the room you are
in by typing the word look by itself, we say that you have invoked the look verb
with no arguments. If you type look hat, then the word “hat” is an argument to
the look command. If you type look rabbit in hat, then the words “rabbit”,
“in” and “hat” are arguments to the look command. In such a case, “rabbit” is
the direct object, “in” is the preposition, and “hat” is the indirect object. Some
commands always take the same fixed number of arguments. For example, the
command @go always takes one argument, the room to which you wish to travel.
Other commands can take an arbitrary number of arguments. For example, go needs
at least one argument, but is able to take several. go north will move you from your
current location through the exit named “north”, if there is one. If you are in the
Living Room on LambdaMOO, typing go north east east up east north will
move you through successive exits until you arrive at the library.

argument specifiers – When a programmer first creates a verb on an object, e
must, as part of the command that creates the verb, specify what arguments the verb
takes if any. This is done by typing a word that stands for the direct object of the

mailto:@rename

244 Glossary

command, a word that stands for a preposition, and a word that stands for the
indirect object. If I am creating a trophy, and want to write a verb to award it to
someone, I might type the following:

@verb trophy:award this to any

 “Award” is the name of the verb itself. “ This” means that when someone types the
award command, the trophy (“this”) will be in the position of the direct object.
“To” is the preposition, signifying that the trophy will be awarded to someone, not
from or about em, for example. Last, “any” indicates that the trophy can be awarded
to anyone or anything. The words “this to any” are the argument specifiers.

background task – A foreground task is a task that executes “while you wait”.
There are some things that the computer does independent of a person typing in a
command and waiting to see the result. Suppose I have a MOO timer, and I type the
command set timer for 5 minutes. The computer might print to my screen,
“Timer started” and that exchange represents a completed foreground task. I
proceed to chat with my friends on the MOO. Each invocation of say and emote
also represents a (short) foreground task. Meanwhile, the timer program is counting
off the seconds, up to five minutes, without tying up my screen. That is, I don’t have
to wait the five minutes before I can type something else. The counting off of the
seconds is said to be accomplished “in the background”, or is described as a
background task. When the five minutes are up, the timer prints the line, DING! 5
minutes are up! to my screen, and the background task is ended. (See also task.)

bash – An offline party or other gathering of MOOers. Sometimes bashes are given a
qualifying prefix. “NYE-bash” would be a New Year’s Eve bash. “Sushi-bash” would
suggest some MOOers going out for sushi together. Usually the term “bash” implies
that any MOOer who is told the time and place is welcome to attend.

'bot – ’Bot is short for “robot”, and it typically refers to something that acts like a
player but isn’t a player. There is a further refinement, which is whether the bot is an
actual player object or not. Some people have written programs that log on to
LambdaMOO (using a player name and password). These programs maneuver the
player-object through the MOO, and are programmed to recognize and react to
conversation and perhaps other text generated by human typists. Another kind of
’bot is a non-player object within LambdaMOO that is controlled to a greater or lesser
extent by a human typist but which is not in fact a player object. These are
sometimes also called puppets. This kind of ’bot is easier to identify, because if you
examine it, you’ll see that it is not its own owner. Real players own their player
objects; puppets and other automata do not.

built-in function – A program is a collection of commands which are executed in
a particular order. These commands can either be other programs (often called
“subroutines”), or any of a subset of commands that are intrinsic to the system (in
other words, commands that are provided by the server rather than written in MOO
code). Some examples of built-in functions:

length(<item>)
players()
connected_players()

Glossary 245

byte – A byte is a unit of computer storage space. Typically, one letter of the
alphabet takes up one byte of space.

call – Suppose you are making chocolate soufflé. Recipes have several steps, and
sometimes refer to other recipes, e.g., “Make a béchamel sauce (see page 257).”
Similarly, commands (verbs) can – and usually do – consist of several steps, often
referring to other verbs. These other verbs are sometimes called subroutines, and
when a verb asks the computer to execute one, we say that the verb calls the
subroutine.

channel – Many MOOs have a special communications facility called channels. A
fair analogy might be to compare channels to Citizens’ Band radio. One connects to
a particular channel, and can then listen to everyone who is talking on the channel
and can transmit on the channel without being co-present in the same room(s) as
others who are also connected to the channel.

character – A character is another name for a player, which is an object that
represents a typist within the context of the MOO. Sometimes the two terms are
combined: player-character. The distinguishing feature of a player-character object,
unlike every other kind of object, is that the built-in system function
is_player(<object>) returns 1.

child – With the exception of the root object (#1), every valid object has all the
same properties and verbs as another object, said to be its parent. An object is said to
be a child of that other object. An object can have many children but only one
parent..

class – When an object is intended solely to serve as the parent of other objects
rather than being used itself, it is referred to as a generic or as a class . Things that have
that object as a parent or ancestor are said to be of that object’s class.

command – A command is a word, sometimes with accompanying arguments, that a
typist enters with the intention of obtaining some result or causing some effect. All
commands are verbs, but not all verbs are commands. This is because some verbs are
only meant to be called from within other verbs and not directly by a typist.
Examples of commands are:

look me
@who
put rabbit in hat

command line – When you type a command, you are said to type it at the command
line . Some verbs (e.g. say, emote, page, @join) are intended to be invoked as
commands, and these are sometimes called command line verbs. Other verbs are
meant to be called only from within other verbs. These are called subroutines.

connected – A room is said to be connected if you can get to it without having to
teleport.

contents – Every valid object in a MOO has a property that designates its location
(given in terms of an object number), and another property that designates its
contents: things whose location is in turn the object in question. If A contains B,
then B appears in A’s .contents property, and the value of B’s .location property
is A. A refinement to this concept is that the notion of containment extends to

246 Glossary

contents of contents. Think of nested boxes. If A contains B and B contains C, then
even though C doesn’t appear directly in A’s .contents property, C is said to be in
A’s containment hierarchy. Objects cannot contain themselves, nor can two objects
contain each other simultaneously or otherwise violate the containment hierarchy.
(The MOO has no formal way to designate sizes of things, so a tiny little jewel box
can easily contain a hippopotamus!)

core – Also referred to as the core database. A brand new MOO that is just up and
running consists of two major pieces, the server and the core database. The server is
the actual program that runs on the host computer. The core database is that set of
objects within the MOO that every MOO starts with. The core database includes
several objects that are sets of utility programs, written in the MOO programming
language, which are used in making more complex objects and MOO programs. The
core also includes #2 (the player that is the ArchWizard), the system object, the
generic room, the generic exit, and various other items. The core includes a verb,
#0:core_objects, that defines the list of objects that comprise the core database.
This book confines itself to MOOs based on LambdaCore. Other available cores
include JHCore and EnCore.

data types – The MOO programming language recognizes six different kinds or
types of data: integers, decimal numbers (also called floating point numbers), character
strings, objects, error codes, and lists.

database – When used in the context of a MOO, the database refers to the collection
of all the existing objects along with their associated properties and verbs. The server
loads the database to run the MOO.

defined – Every verb is associated with an object, either a player, a player class, a
place (room), or a concrete object. It is associated with this object when it is first
programmed. (In the case of rooms or players or articles, the verb usually
manipulates that object in some way.) We say that a verb is defined on the object to
which it was attached at the time it was programmed. We care about which object a
verb is defined on when we want to list it to see how it works, or perhaps fix a bug (if
the verb is defined on an object that we own).

descended from – An object is said to be descended from another object if the other
object is in its chain of parents.

expression – An expression is a combination of characters that, when evaluated as a
piece of MOO code, generates a value.

exit – An exit is a special kind of object that doesn’t exist in any particular place per
se (its actual location is usually #-1 ($nothing), but that is associated with a room,
its source. When you are in a room, there are what are called obvious exits. When you
type the name of an obvious exit, you are transported to that exit’s destination, and
that is referred to as invoking an exit.

fertile – Every valid object on LambdaMOO has a property that indicates which
object is its parent. An object’s initial parent is specified when it is created. You may
create a child of an object you don’t own if and only if the (potential) parent object is
fertile. For an object to become fertile, its owner must make it fertile using the
@chmod command.

Glossary 247

flag – A flag is a kind of variable whose value is either TRUE or FALSE.

foreground task – A task that executes “while you wait”, typically the result of
typing in a command. See also background task.

forked task – This is another name for background task.

fork bomb – A fork bomb is a program that generates more and more forked tasks
until the system is overloaded. The system becomes terribly lagged, then grinds to a
halt. A fork bomb is usually viewed by a MOO’s wizards as a “denial of service
attack” and its perpetrator, when found, may have eir programming privileges
revoked. On rare occasions, a new programmer will generate a huge number of
forked tasks inadvertently. If the wizards believe this to be the case, there is usually
no punishment beyond disabling the offending verb and asking the programmer to
be more careful in the future.

gag – To gag someone is to indicate to the system that you do not wish to see any
text that results from the gagged player’s typing anything. Other people will still see
the gagged player’s output. See help @gag.

game master – In the LambdaMOO RPG, one who has programming privileges. (See
also Grand_Master.)

generic –An object that exists solely to be a parent of other objects.

Grand_Master – A character on LambdaMOO who owns all RPG objects and has
access to statistics otherwise unreadable to other players (except wizards). One or
more typists may have and use this character’s password. Grand_Master is used only
for RPG administrative purposes and occasional debugging. (See also game master.)

gurst – In LambdaMOO parlance, a gurst is a guest whose typist has a registered
player-character. Some players log on as guests in order to circumvent noise
abatement measures. Some do so to rediscover the joys of truly anonymous MOOing
or simply for a change of pace. Some do so because they have for some reason
temporarily or permanently lost the ability to connect as their regular player-
character. Opinions differ on whether unruly behavior or an intent to deceive are
necessary in order for a guest to be considered a gurst.

idle – To remain connected without interacting. It is used as both an adjective and
a verb: AcidHorse is idle. AcidHorse is idling. It is not unusual for a person to emote
:idles before paying attention to another window or leaving eir keyboard while still
connected to the MOO.

input – information that goes into something, usually a computer program. A
program that sorts numbers, for example, might display the prompt, Enter some
numbers to sort: The numbers that the user types in would be the input. (The
sorted list of numbers would be the program’s output.)

invalid – MOO objects are said to be either valid or invalid. An object is valid if
someone has created it or recreated it (with the @create or @recreate commands
respectively). An object is invalid if it has been recycled, or if it has never been
created in the first place. (E.g. object #99999999999999999999 is not a valid object
(as of this writing).) There are a few objects that exist but are not valid. These usually

mailto:@gag

248 Glossary

have negative object numbers (e.g. #-3), and are used by the system to designate
various error conditions.

inventory – Those objects that a player is holding or carrying.

invoke – To cause a command to be executed by typing its name. If there is an exit
in your vicinity named “north” for example, you are said to invoke the exit when
you type north.

lag – A (usually unexplained) delay in the system’s response time. Normally when
you type something in, especially if you’re simply saying or emoting something, the
associated text prints out on your screen right away, and if you’re in a room full of
active players, text appears at a fairly steady rate. There are a variety of reasons why
someone else’s text might be delayed in its appearance: e might have been called
away from the keyboard unexpectedly, e might be thinking about eir response, or
typing in a long line, or multi-tasking, or it might just be because of lag. A sure sign
of a lag storm is when your own text is delayed in appearing. Sometimes lag isn’t on
the MOO itself, but is in the network somewhere between the MOO and a typist’s
computer. This is usually referred to as net lag. It is characterized by some MOOers
experiencing lag and others not.

LambdaCore – A core database derived from LambdaMOO. (See also core.)

$limbo – The location to which a player is returned when e logs off if any of the
following apply: eir home is $player_start, eir home won’t accept em as a
resident, or eir home is invalid.

list – A list is a particular way of representing a set of things in the MOO
programming language. The elements of a list may be numbers, strings of characters,
objects, other lists, or any combination. Lists are designated using curly braces “{}”,
and their elements are separated by commas. Example: {"This", "is", "a",
"list", "of", "strings", "."} The empty list is a meaningful construct in the
MOO programming language, and is designated with just the curly braces: {}.

lurk – To read a mailing list without posting, to stay in a room without saying,
emoting or otherwise contributing anything, or to listen to a channel without
speaking on it.

matching – Matching refers to the system associating a name you type in with an
object’s unique number. If you page a particular player (i.e. page mockturtle
Don't you ever sleep?), the code for the “page” command matches mockturtle
to mockturtle’s object number, and forwards the message accordingly. If you are
holding a rock and type drop rock, the system will match the word “rock” with the
rock you are holding and move the rock from you to the room you are in. If you are
holding more than one rock, the system will be unable to match the word “rock” to a
unique object, and you would see, I don't know which "rock" you mean. If
you weren’t holding a rock at all, The system would display, I see no "rock"
here. (The first case is referred to as an ambiguous match and the second is a failed
match.) In general, in order for the system to match a name that you type with a
unique object, you either have to be holding the object or in the same room as the
object. Exceptions to this include many of the commands that refer to players (e.g.

Glossary 249

page and @join) since player names are unique, and also the @go command, which
can look for the name of a room in a player’s .rooms database.

mav – According to the FAQ found at http://www.mudconnect.com/mudfaq/mudfaq-
p1.html#q30, Mav was a TinyMUDder who would sometimes accidentally emote
something to an entire room when he meant to whisper or page it. The word has
come to mean any mix-up between say, emote, remote-emote, whisper, page, etc.

meta-VR – Actions or commands that “break” the virtual reality and call attention to
the fact that you are using a computer program and not a real (i.e. tangible) mansion,
castle, cave system, what-have-you. By convention, most non-VR commands on
MOOs begin with the “@” sign, although there are exceptions to this. Some examples
of non-VR commands would be @who, @join <person>, @send <person-or-
mailing-list>.

morph – A morph is an alternate presentation that a player-character may adopt,
while temporarily storing eir original name, gender, and description. An alter ego.
Did you ever notice that you never see Super Man and Clark Kent together at the
same time? They might be morphs of the same person. While a player’s name,
description, gender, and messages may change when e morphs, eir object number
(and password) remain the same.

multiple characters – Many people choose to have more than one character on a
MOO. Multiple characters are different from morphs in that there are two (or more)
separate player objects with different object numbers; it is more difficult for players to
determine that multiple characters are controlled by the same typist than it is with
multiple morphs. LambdaMOO permits multiple characters, but they must be
registered as such. Among other things, only one of a typist’s multiple characters
may participate in the political system there.

multi-tasking – This term refers to a computer that is executing more than one
task at the same time. Informally, a person is said to be multi-tasking if eir attention
is divided between two more simultaneous activities.

newt – The act of metaphorically turning a player into a newt or, a player who has
had this done to em. The @newt command, available to wizards only, blocks a
player’s access to the system, either for a specified or indefinite period of time. This
action is typically taken when the wizards believe a player might be a threat to the
system. It is occasionally done for punitive reasons or for noise abatement. It is
possible for a player to effectively newt emself, using the boot_player() built-in
function within a custom :confunc verb. (See also toad.)

non-VR – See meta-VR.

object – Objects are the fundamental building blocks of an object-oriented system.
On a MOO, every object has a unique number (prefixed by the “#” sign), a name, an
owner, a location, and a property listing its contents.

options package – An options package is a set of commands and data values that
enables you to customize some aspect of your MOOing experience. There are many
options packages that govern how different things work for you, specifically.
Examples of these include mail-options, to customize various aspects of sending

http://www.mudconnect.com/mudfaq/mudfaq-

250 Glossary

and receiving mail, edit-options, which customize certain aspects of how the
editors work, builder-options, and programmer-options. Options packages can
be associated with player classes, generic rooms, feature objects, or any other kind of
object. There is no single definitive way to list all the options packages available to
you, but they are usually referenced in other objects’ help texts. Help options will
give you a list of some of them.

output – The result of (usually) a computer program, which is displayed to one or
more users. Sometimes one refers to a person’s output, meaning that which the
person produces, either manually or with the aid of a program.

parameters – Limits, usually numeric, that are set in advance. One speaks of
“working within a set of parameters.” Parameters are not the same as arguments: If
one had a program to sort numbers, the arguments would be the numbers to sort. A
parameter might be the maximum number of arguments the program could or would
accept.

parent – See child .

parser – When you type a line of text, the system has to figure out which segment
of what you typed constitutes the command, and identify the verb to run, the direct
object, the preposition, and indirect object, if present. The part of the system that
does this is called the parser.

player, player-character, player object – An object on a MOO that
represents the VR embodiment of a human typist.

player class – An object on a MOO that serves as a repository for additional
commands that a player might choose to use. A player adopts a player class by
changing eir parent to the player class. Implicit in this act is adopting all ancestors of
the selected player class as well. There is a calculated risk in adopting a player class
which is that player class owners could theoretically intercept private
communications, and are able to change some of a player’s fundamental attributes.
Such incidents are rare, but one should know the risks going in. (See the section on
player classes beginning on page 43 for more about this.)

$player_start – The location where guests, new players, and players without an
otherwise-valid home find themselves when they log on.

port – (Think “transport”.) To record all the particulars of an object on one MOO
and use the information to recreate it as exactly as possible on another MOO. One
should ask permission of an object’s author before porting it.

primary character – On some MOOs, human typists are permitted to have more
than one player character. On LambdaMOO, only one of these has the rights of
citizenship (authoring and signing petitions, voting, etc.). The one with the voting
rights is referred to as one’s primary character. Others are referred to as secondary
characters. MOOs that support multiple characters sometimes have a registry to
differentiate primary and secondary characters, which only wizards can access. By
convention, it is the prerogative of the typist and no one else to disclose secondary
character information. If someone shares such information, it behooves one to treat
it as privileged.

Glossary 251

program – A sequenced set of instructions that a computer follows slavishly.
Programs can be very simple or quite complex or anything in between. On a MOO,
the terms program and verb are frequently used interchangeably. (One programs a
verb, but does not verb a program, however.)

programmer – A person who programs computers. In a MOO, wizards grant what is
called a programmer bit which changes a player’s .programmer property from 0 to 1.
The system then recognizes the player as empowered to write MOO programs. When
contrasted with the term user, this term more specifically refers to the person who
wrote the program that the user is using.

property – A property is a named piece of data associated with an object. Within
the system, properties are designated by the object number followed by a period (.)
followed by the property’s name. When speaking of a property independent of the
object it might be associated with, the object number is sometimes omitted. For
example, “Every valid object has the following properties: .name, .location,
.contents, .owner.” Players may change the values of many properties on
themselves and on objects they own. Programmers may add new properties to
objects they own. Properties are used to store data that are needed or wanted after a
verb has finished executing, or for data that are needed by more than one verb. (See
also variable.)

puppet – An object that may impersonate a player, whose “hearing” may be
monitored by a player and whose responses may be controlled by a player, but which
is not in fact a player. Butlers and bartenders at various venues are likely to be
puppets.

queue – A queue is a list of tasks that are scheduled to run at a later time.

reap – To expunge a player-character from a MOO, typically because e has been
inactive for a long time.

reaper – Traditionally, only MOO wizards have the power to reap a player. On
LambdaMOO, certain non-wizard players are entrusted with this task. LambdaMOO
reapers are elected.

response latency – The delay between a real time communication to a player and
that player’s response. Reasons for a lengthy response latency might be thinking
before answering, composing and typing in a long response, being away from the
keyboard, or system lag (which see).

return value – When a verb is called or an expression is evaluated, it always
returns a value. The return value of the expression 2 + 2 is 4, to give a simple
example. The return value is not always the entirety of the result – sometimes a verb
may also have a side effect . In many cases, the return value is either 1 or 0, signifying,
“The operation was successful,” or, “The operation was not successful,” respectively.
The operation in question is whatever the verb is supposed to do.

room – An object that is descended from $room. More loosely, an object that players
can enter and which looks, sounds, smells, and feels like a room (i.e. it might as well
be a room).

.rooms database – A property on a player that is a list of object numbers and
names or abbreviations for rooms. One’s .rooms database is used in conjunction

252 Glossary

with the @go command, so that you can type @go library, for example, without
having to remember the library’s object number. You can type @rooms to see your
own .rooms database. You can modify your .rooms database with the @addroom
and @rmroom commands.

RPG – Role Playing Game. Some MOOs have within them a role playing game akin
to the early adventure/dungeon games from which social MOOs arose. On
LambdaMOO, this game is referred to as an “area”, though various sets of rooms
might be tightly or loosely connected. Briefly, one becomes “initiated”, a process by
which one acquires a surrogate (called a “doll” or “voodoo doll”) on which are
recorded one’s victories and defeats over various and sundry RPG opponents. You
train to increase skill and then venture forth to seek treasure, fight various monsters,
and so forth.

secondary character – Some MOOs permit a typist to have more than one player
character. Usually the first or oldest of these is designated as one’s primary character,
and others are referred to as secondary characters. On LambdaMOO it matters
especially because only primary characters have the rights of citizenship (authoring
petitions, voting, etc.).

server – The program, written in the C programming language (as it happens) that,
when running, is the MOO. This program accepts connections from players logging
on, reads what players type in, and responds accordingly. When you type something
in, part of the program that’s running (the parser) figures out what command you’ve
typed and which object(s) you’re trying to manipulate, and then causes the
appropriate function or verb to be executed.

shouting – There are two usages of the term “shouting”. One is to say or emote
something in all capital letters. The other is to broadcast something to everyone who
is logged on, even though they aren’t in the same room. An appropriate use of the
latter would be for a wizard to shout that e is about to reboot the system for some
reason.

side effect – Some verbs just return a value: an arithmetic calculation, the name
or location of an object, etc. But other verbs do things in addition to returning a
value, such as announcing text to a room, or changing something in the database.
These additional things are called side effects.

spam – Copious amounts of unwanted text whose volume is so great it renders its
content useless or pointless.

spoof – To cause unattributed text to appear on other people’s screens, or the
unattributed text itself. There are three general forms. In one, no player’s name is
included: “The chandelier falls to the floor with a crash!” In another, the name of
the player perpetrating the spoof does appear in the text, but not at the beginning,
and another player’s name might appear at the beginning instead. The classic form
of this is, “Werebull causes Yib to fall down laughing,” (with Yib causing this text to
appear, not Werebull). Some players vehemently object to this form of spoof; others
take it in stride. It is in fairly common use. The third form is particularly offensive
and considered officially unmannerly on most MOOs, and this is text that depicts a
player doing or saying something, which text the depicted player did not emself type
in: “Yib produces a previously unseen puke green wiffle bat and proceeds to bash

Glossary 253

herself several times over the head with it.” (Where some unnamed stinker caused
this text to appear and Yib didn’t.) There is no programmatic way to prevent players
from spoofing, but there are a few different ways to detect it, including tell-filters and
the combined commands @paranoid and @check-full.

string – A sequence of letters, numerals, or punctuation marks or any combination
thereof. When depicted, a string is enclosed between double quotation mark
characters, e.g., "chocolate souffle".

subroutine – Some verbs are called not from the command line but from within
other verbs. These are called subroutines. Suppose you wanted to make a chocolate
soufflé. The recipe might begin, “Make a béchamel sauce (see page 257).” You would
turn to page 257, follow the directions for making a béchamel sauce, then return to
your place in the soufflé recipe. Executing a subroutine is like making the béchamel
sauce.

syntax – A generalized expression of the correct usage of a command or subroutine.

system – This is a general term that is used to refer to a program that is running or a
set of programs working together. It can mean the MOO itself, as in, “What did the
system respond when you typed @parents me?” or it can refer to the operating
system on the machine on which the MOO is running, as in, “The system will be
shut down in two hours for its ritual Saturday night bath.”

system character – A player object that does not actually have a human typist
associated with it. System characters are typically used to serve as the owner of
record of objects associated with one or another project. On LambdaMOO, for
example, the system character “Petitioner” owns all petitions, ballots, and related
objects.

task – Many players can use a MOO at once. The system receives text that a player
types, processes it in some way, and then (usually) prints text to the player’s screen in
response. Whenever a player types in a command and the system executes it, that is
called a task, and more specifically, it is called a foreground task. Other tasks run “in
the background”, which is to say that the player who initiated this task is free to type
in another command (thereby starting another task) before the background task is
finished. Many objects with “delayed reaction” behavior utilize background tasks.
Here’s an example. In the LambdaMOO Living Room, there is a fireplace. You can
pile logs in the fire place, and then light the fire. While the logs are burning, the fire
hisses and crackles and pops, but meanwhile you are free to continue conversing with
others present. It is a background task that causes the fireplace noises to appear
periodically. Every background task has a unique numerical identification number
called its task_id.

teleport – Moving to a room in a way that is inconsistent with the Virtual Reality,
e.g. using the @go or @join command.

tell-filter – Every player has a verb on emself called “:tell”. (Some non-player
objects have :tell verbs, too.) This verb receives as input a string of text, and prints
that text on the player’s screen. A tell filter pre-processes text before it is displayed.
For example, it might inspect the text and prepend name of the player who initiated
it, maybe in angle brackets. So instead of seeing, “Jack causes Jill to fall down
laughing,” you might see, “<Jill> Jack causes Jill to fall down laughing.”

254 Glossary

tick – A tick is a unit of computation. Just as it takes most people less effort to add 2
+ 2 than to multiply 13 by 8, different tasks take different amounts of computing
power, and these amounts are measured in units called ticks. When you type
something in, 30,000 ticks are allotted to the task. (This is the default. The actual
number may vary from MOO to MOO). Programmers of commands can, if necessary,
ask the system to “take a breath” (metaphorically speaking) and then resume with an
additional allotment of ticks, though this means that a command will take longer to
complete, both in terms of absolute time (seconds) and ticks. Why do we care about
ticks? Because each task gets only its allotted number of ticks before the system
switches to allow the next task some ticks to compute. The computer can only do so
much at once before it starts to get bogged down. When the system bogs down,
everyone experiences lag (increased response time). Good programmers try to write
code that uses a minimum of ticks without sacrificing clarity for future readers or
maintainers.

tiny scenery – Objects (especially rooms) that have descriptions only and are not
in any way interactive, or items that are mentioned in a room’s description for which
there is no corresponding object.

toad – The act of metaphorically turning a player into a toad, or, a player who has
had this done to em. The @toad command, available to wizards only, removes the
flag by which the system recognizes the player-object as a player. This action is a
natural part of the reaping process (but does not constitute all of the reaping process).
On infrequent occasions it is done for punitive reasons. It is impossible for a player
to toad emself. Contrary to popular belief, toading can be undone, as long as the
player object has not yet been recycled.

toad scar – When a player is @toaded, one of the side effects is that eir object
number is removed from the list of players returned by the built-in function
players(). If a player is reinstated, eir player number is appended to the end of the
list of players, thus appearing out of numerical sequence, and this appearing out of
sequence is what is meant by the phrase toad scar. To quote Nosredna, a
LambdaMOO wizard, “The difference between toading and newting is that toading
leaves a scar and newting doesn’t.”

troll –Trolls are players who log on and make inflammatory remarks or send
inflammatory posts to mailing lists, caring more about riling people up than the
actual substance of their utterances. Contrary to what one might think, trolls are not
universally reviled. Some players actively enjoy challenging trolls about their alleged
views, and believe that both they and the trolls realize that there is a sort of “dance”
going on. (N.B. The name comes not from unruly fairies, but rather the act of
dragging bait through the water, hoping that fish will bite or chase it.)

typist – The human being who is sitting at the computer keyboard typing. A single
typist may have one or more player-characters.

user – A person using a computer program. This term is sometimes contrasted with
programmer, the person who wrote the program that the user is using.

valid – A valid object is one that can be used within the MOO in certain
conventional ways. There are certain pieces of information that are attached to every
valid object without exception. These pieces of information include the object’s

Glossary 255

owner (identified by object number), its location (identified by object number), its
contents (a list of one or more object numbers or the empty list), and its parent
(identified by object number). An object that has a number but doesn’t have these
pieces of information associated with it is not a valid object, by definition. Invalid
objects exist, though, and are used in a number of ways. One of these is $nothing
(#-1), which is where rooms are conventionally located. Other so-called invalid
objects signal an error condition, specifically a failed or ambiguous match.

variable – A named piece of data that is used within a verb, but which does not
exist before the verb runs or after the verb has finished executing. Variables are used
to store intermediate results while a verb is in the process of running but which are
needed neither at a later time nor by another verb. (Contrast property, which is
used to store a result or state for later re-use.)

verb – A verb is a named, ordered sequence of commands that the server can
interpret and execute. Whenever you type a command, for example @who or put
rock in box, you are asking the computer to do something. You are using a verb.
Some verbs are not intended to be used directly by someone typing at a terminal, but
are intended to be called by other verbs. These verbs generally either produce some
side effect – such as changing some data somewhere, or return some intermediate
result to the verb that called it (such as 3, or an object number) – or both. The beauty
of a MOO is that ordinary players can create new objects and write new verbs on
them, thus extending the richness and variety of the environment.

VR – Virtual Reality. In particular, VR refers to actions that conform to the virtual
reality of the MOO you are using. Examples would be saying things to people in the
room with you, “walking” (i.e. using conventional exits and modes of transportation)
as opposed to teleporting, etc. (See also meta-VR.)

wheel – An influential person. As in, “big wheel”.

wizard – A wizard is a player on a MOO with special powers not available to ordinary
players, among them the power to create new players, @newt and @toad existing
players, read otherwise-unreadable properties on any object, read otherwise-
unreadable verbs on any object, read any message on any mail recipient (including
players’ private MOOmail, though wizards generally do not exercise this power), view
all background tasks, and kill any background task. Wizards are usually hand-picked
by the person who owns or is responsible for the system as a whole (this person is
referred to as the ArchWizard). In general, one cannot become a wizard simply by
reaching a certain specified level of proficiency, although proficiency is usually one of
the criteria for selecting wizards, along with trustworthiness. Wizards are expected to
use their powers with discretion. If you do not trust the wizards on a particular MOO
to do so, you should not participate on it.

Conversational Typing Abbreviations

addy – address
afaik – as far as I know
afk – away from keyboard

256 Glossary

atm – at the moment
bbl – be back later
bcnu – Be seeing you.
bf – boyfriend
brb – be right back
btw – by the way
f2f – face to face
fdl – falls down laughing
filfre – feel free (to do something or other)
gf – girlfriend
ianal – I am not a lawyer
iirc – if I recall correctly
imho – in my humble opinion
imnsho – in my not so humble opinion
imo – in my opinion
istr– I seem to recall
j/k – just kidding
l8r – later
lol – laughs out loud
ltns – long time no see
oic – Oh, I see.
otoh – on the other hand
pov – point of view
ppl – people
qooc – quoted out of context
rotfl – rolling on the floor laughing
rtfm – read the manual
R U M or F? – Are you male or female? (This phrase is now eschewed by

experienced players except to make fun of inexperienced players.)
stfu – shut the fuck up
tmi – too much information
ttfn – Ta ta for now
ttyl – Talk to you later
wrt – with regard to
wrte – we regret the error
ymmv – your mileage may vary

257

Addendum to the Glossary

The glossary entries for call and subroutine draw an analogy between a
program calling a subroutine and a cookbook referring to one recipe from within
another recipe.

The following two recipes are provided as an adjunct to those entries, just in case
someone actually decided to check my cross-references.

Béchamel Sauce

2 Tablespoons butter

2 Tablespoons flour

1 Cup milk, heated

Salt

Freshly ground pepper

Melt the butter in a small shallow pan. Stir in the flour and cook, stirring
constantly, until it bubbles a bit, but don’t let it turn brown. 2-3 minutes.

Add the milk a little bit at a time, stirring to incorporate each addition
completely before adding more. You should have a smooth paste. Bring just to a
boil, add salt and pepper to taste, then lower the heat and simmer for 2-3 minutes
more. Remove from heat.

This can be stored for later use. After it has cooled somewhat, place a piece of
plastic wrap directly on the surface to prevent a skin from forming.

Chocolate Soufflé

Contrary to popular belief, a soufflé is not difficult to make, though it takes a
while and must be served immediately. Most of the work can be done ahead of time.

2 1/2 ounces unsweetened chocolate

5 Tablespoons sugar

2 Tablespoons butter

2 Tablespoons flour

1/8 teaspoon salt

3/4 Cup whole milk

3 eggs, separated

1 teaspoon vanilla

1 pint vanilla ice cream (for the sauce)

Preheat the oven to 325° F. Butter a 1 1/2 quart soufflé dish and dust with
granulated sugar. Set aside.

258 Glossary Addendum

Put the chocolate, 2 Tablespoons of the sugar and 2 Tablespoons of hot water in
a small pan and heat slowly, stirring occasionally, until the chocolate is melted and
smooth. Remove from the heat and set aside.

Follow the procedure for béchamel sauce (see page 257) using 2 tablespoons
butter, 2 tablespoons flour and 3/4 cup milk, but salting only lightly and leaving out
the pepper. Blend in the chocolate mixture.

Beat the egg yolks well. Stir a little of the hot sauce into the yolks, then add the
yolks to the remaining sauce. Stir well, then set aside to cool.

This much can be done in advance.

With clean beaters, beat the egg whites until foamy, then slowly add the
remaining 3 tablespoons of sugar, and continue beating until stiff but not dry. Stir
about 1/4 of the whites into the chocolate mixture, then fold in the remainder. Stir
in the vanilla.

Pour all into the soufflé dish, sprinkle the top with sugar, and bake for 35
minutes. Meanwhile, set out the ice cream to melt at room temperature.

Serve immediately with a “cold vanilla sauce” made from the melted ice cream.

